

(Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai)
(Accredited by NBA (CSE, ECE, EEE & MECH) and NAAC, An ISO 9001:2015 Certified Institution)

Namakkal - Trichy Main Road, Tholurpatti (P.O.), Thottiyam (TK), Trichy (Dt.) - 621 215.

■ Volume 02

■ Issue 02

■ July 2023

ACADEMIC YEAR: 2022-2023

MECH MAGAZINE

DEPARTMENT OF MECHANICAL ENGINEERING

College Vision & Mission

★ Vision

"To become an internationally renowned Institution in technical education, research and development, by transforming the students into competent professionals with leadership skills and ethical values."

Mission

- Providing the best resources and Infrastructure.
- Creating Learner centric Environment and continuous – Learning.
- Promoting Effective Links with Intellectuals and Industries.
- Enriching Employability and Entrepreneurial Skills.
- Adapting to Changes for Sustainable Development.

Department Vision & Mission

★ Vision

To endeavour the excellence in Mechanical Engineering field globally by producing competent and confident graduates to face the future challenges.

★ Mission

- * Provide transformative education to students and improving their skills to face the global challenges in Mechanical and Allied Engineering.
- Nurture innovation, attitude, creativity, core competency and serve the society through requisite infrastructure and environment.
- Inculcate real world challenges, emerging technologies and endeavour the students to become entrepreneurs or employable.

Program Educational Objectives (PEOs)

PEO I: Graduates shall excel in the field of design, thermal, materials and manufacturing, as successful engineers or researchers or as entrepreneurs.

PEO II: Graduates will analyze problems, design solutions and develop products as a team member in advanced industrial projects.

PEO III: Graduates shall have professional ethics, team spirit, life-long learning, good oral and written communication skills and adopt corporate culture, core values and leadership skills.

Program Specific Outcomes (PSOs)

- PSO 1: Professional skills: Students shall understand, analyze, design and develop integrated equipment, thermal devices and composite components.
- * PSO 2 : Competency: Students shall qualify at the State, National and International level competitive examination for employment, higher studies and research.

Program Outcomes (POs)

*Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

*CHIEF PATROS

Dr. PSK.R.Periaswamy

Chairman

Kongunadu Educational Institutions

*ADVISORS

Dr. R.ASOKAN, Ph.D.,

Principal

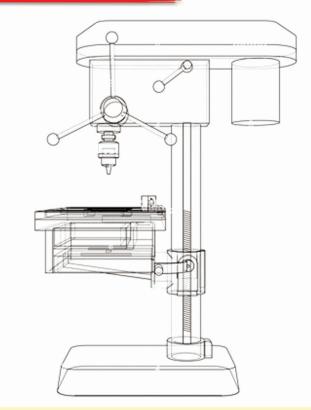
Dr. D.Jagadeesh, Ph.D

Associate Professor & Head / MECH

Dr. K.Periasamy, Ph.D Professor / Mech

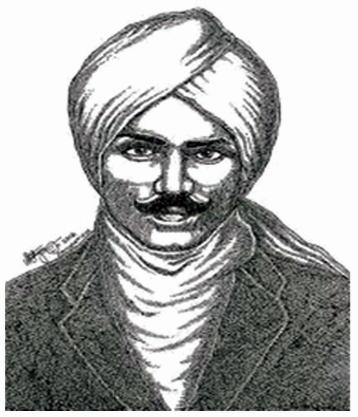
*****EDITORS

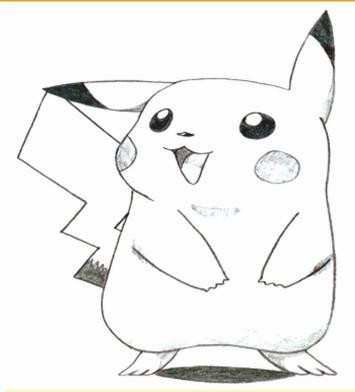
Mr.N.Kawin, Assistant Professor / MECH


K.Hariharan (III-MECH)

M.Elavarasan (III-MECH)

STUDENTS CREATIVITY


K.PRIYADHARSHINI II MECH


P.ROHITH II-MECH

S.BALAJI II-MECH

N.YUVARAJ, II-MECH

J.BOOMINATHAN II-MECH

STUDENTS POEM

THE RIVER OF LIFE

Life is a river, flowing wide, A journey we take with the turning tide. It twists and it bends, sometimes unclear, But always it carries us year by year. Its waters are calm, like moments of peace, Where worries dissolve, and doubts release. Then comes the rush, the turbulent stream, Chasing a goal, or living a dream. Life paints the sky with sunsets ablaze, Sprinkling joy in its golden rays. Yet storms may come, with shadows that fall, Testing our strength through it all. Each pebble it smooths, each lesson it brings, Teaches us growth and the courage of wings. For though it may rain, and the winds may sigh, The river flows on, 'neath the endless sky. So cherish each ripple, each moment's glow, For the river of life forever will flow.

M.NITHYA III-MECH

THE COLORS OF SCHOOL LIFE

In the morning light, the bell will chime, Marking the start of another climb. Books in hand, hearts full of dreams. School life flows like lively streams. The classroom hums with whispered chatter, Pens on paper, thoughts that scatter. Questions asked, and answers found, In learning's rhythm, we're all bound. Recess brings the sunlit cheer, Laughter echoes, friends draw near. Chasing dreams on the playground sand, Building castles with a helping hand. Teachers guide with wisdom's flame, Every lesson a stepping stone to fame. From math to art, from history's lore, They open wide the knowledge door. There are tests that challenge, days of stress, Yet triumphs too, when we do our best. Friendships bloom, like flowers in spring, Together, we face what life may bring. From first-day jitters to farewell's sigh, School life teaches us to reach for the sky. A chapter written in youthful ink, Memories etched, that make us think. So cherish these days, both joy and strife, For they are the colors of school life.

> J.ASHISH, III-MECH

WHISPERS OF NATURE

The sun peeks out, its golden hue, Painting the world with morning's dew. Gentle winds through the trees do play, Singing songs to greet the day. Mountains rise with timeless grace, Clouds embrace their rugged face. Rivers dance with a joyful stream. Carving paths, a nature's dream. Fields of green with flowers bright, Bask beneath the sky's soft light. Birds take flight, their wings unfold. Telling tales both new and old. The ocean roars, the waves align, In rhythm with the Earth's design. Each grain of sand, each drop of rain, Holds a story, deep and plain. So pause and breathe, let stillness grow, Feel the Earth's pulse, soft and slow. For in its arms, we all belong, A part of nature's endless song.

M.VISHNU, III-MECH

STUDENTS THOUGHTS

*Recent Developments in Welding Technology

Welding technology has undergone significant advancements in recent years, driven by the demands of modern industries such as aerospace, automotive, construction, and energy. These developments are enhancing welding efficiency, precision, and sustainability, making the process more versatile and adaptable to complex applications. Here are some of the most notable recent developments in the field:

1. Advanced Welding Processes

One of the most impactful advancements in welding is the refinement of existing techniques and the introduction of new ones. For instance :

- Friction Stir Welding (FSW): Initially developed for aluminum, FSW is now being adapted for materials like titanium and steel. This solid-state process improves joint strength and reduces defects, making it ideal for aerospace and shipbuilding applications.
- Laser Welding: Recent improvements in laser technology have enabled deeper penetration and higher precision. Fiber lasers and hybrid laser-arc welding are now commonly used in automotive and electronics industries for intricate and high-speed applications.
- Cold Metal Transfer (CMT): This low-heat input welding method minimizes spatter and distortion, making it suitable for thin materials and dissimilar metal joining.

2. Automation and Robotics

The integration of robotics and automation in welding is revolutionizing the industry. Modern robotic welding systems are equipped with sensors and artificial intelligence (AI) to ensure precise control and adaptability. Key advancements include:

- Collaborative Robots (Cobots): Designed to work alongside human operators, cobots are making welding processes more flexible and accessible to small and medium-sized enterprises (SMEs).
- Al-Driven Systems: Machine learning algorithms are now used to predict defects, optimize parameters, and monitor real-time performance, leading to improved quality and reduced waste.

3. Materials and Consumables

With the rise of advanced materials, welding consumables are also evolving to meet new challenges. Examples include:

- High-Strength Steels and Composites: New filler materials and techniques are being developed to weld high-strength, lightweight materials used in automotive and aerospace industries.
- Additive Manufacturing (AM) Integration: Wire arc additive manufacturing (WAAM) combines welding and 3D printing to create large, complex components with minimal material waste.

4. Eco-Friendly Innovations

Sustainability is becoming a priority in welding technology. Recent innovations aim to reduce energy consumption and environmental impact:

- Energy-Efficient Equipment: Inverters and advanced power sources reduce energy consumption and enhance arc stability.
- Emission Control: Fume extraction systems and low-emission consumables are improving workplace safety and reducing environmental pollution.

5. Non-Destructive Testing (NDT) Enhancements

Advances in NDT are ensuring higher reliability and quality control in welded structures. Technologies like phased array ultrasonic testing (PAUT) and real-time radiography are providing better defect detection and analysis.

6. Digitalization and Industry 4.0

The adoption of digital tools is transforming welding into a data-driven process. Features include:

- Welding Simulators: Virtual reality (VR) simulators are now widely used for training, enabling operators to practice without wasting materials.
- Real-Time Monitoring: Internet of Things (IoT) devices collect data during welding to optimize processes and predict maintenance needs.

* Conclusion

Recent developments in welding technology are addressing the challenges of modern manufacturing and construction by improving precision, efficiency, and sustainability. The integration of advanced processes, robotics, eco-friendly practices, and digital tools is reshaping the industry, making welding more adaptable to the demands of emerging materials and complex designs. As technology continues to evolve, welding will remain a cornerstone of industrial progress, supporting innovations in multiple sectors.

C.SURIYA IV-MECH

*Additive Manufacturing : Revolutionizing Modern Production

Additive Manufacturing (AM), commonly known as 3D printing, is a transformative approach to industrial production that enables the creation of complex geometries and products by building up materials layer by layer. Unlike traditional subtractive manufacturing methods that remove material to shape an object, AM adds material where needed, making it highly efficient and resource-conscious.

* Historical Evolution

The origins of AM date back to the 1980s with the advent of stereolithography (SLA), a process developed by Charles Hull. Over the decades, advancements in technology, materials, and software have propelled AM from a niche prototyping tool to a mainstream manufacturing solution. Today, it spans a variety of techniques such as fused deposition modeling (FDM), selective laser sintering (SLS), and metal powder bed fusion, among others.

★ Core Principles

At its heart, AM relies on computer-aided design (CAD) models that are sliced into thin cross-sectional layers. These digital layers guide the printer in depositing or solidifying material sequentially, resulting in a three-dimensional object. The layer-by-layer construction allows unparalleled design freedom, enabling intricate shapes, internal structures, and bespoke customization.

Applications Across Industries

AM has become a game-changer across multiple industries:

1. Aerospace and Defense:

Lightweight and high-strength components are essential in aerospace. AM enables the production of complex parts such as turbine blades and fuel nozzles with reduced weight and improved performance.

2. Healthcare:

In medicine, AM has revolutionized the creation of custom prosthetics, implants, and dental devices. Bioprinting, a subset of AM, is even exploring the fabrication of tissues and organs.

3. Automotive:

Automakers use AM for rapid prototyping, tooling, and even end-use parts like brackets and fixtures, accelerating design iterations and reducing costs.

4. Consumer Products:

From customized footwear to jewelry, AM empowers brands to deliver highly personalized products directly to consumers.

5. Construction

Large-scale 3D printers are now building entire houses and infrastructure components using innovative materials like concrete composites, reducing labor and waste.

*Advantages of Additive Manufacturing

1. Design Flexibility

AM allows the creation of complex geometries that are difficult or impossible to achieve with traditional methods.

2. Material Efficiency

By adding material only where needed, AM minimizes waste, making it an environmentally friendly option.

3. Customization

Products can be tailored to individual specifications without significant cost implications, especially for one-off or small-batch production.

4. Speed and Agility

Prototypes and final products can be manufactured quickly, reducing the time to market for innovative ideas.

5. Cost-Effectiveness for Low Volumes

Unlike traditional methods that require expensive molds or tooling, AM eliminates these upfront costs, making it ideal for low-volume production.

Challenges and Limitations

Despite its advantages, AM faces certain challenges :

• Material Limitations: The range of usable materials is expanding but remains more limited than traditional manufacturing.

- Surface Finish: Many AM products require postprocessing to achieve a polished appearance.
- Scaling Up: AM is less cost-effective for mass production compared to traditional methods.
- Standards and Regulations : As AM enters critical sectors like aerospace and healthcare, robust standards and certifications are essential.

★ Conclusion

Additive Manufacturing is more than just a manufacturing method; it is a technological revolution that redefines how products are designed, created, and used. Its ability to address challenges in traditional manufacturing while opening up new possibilities ensures its continued growth and significance. As AM evolves, it promises to unlock innovations that will shape the future of industries and society as a whole.

R.SRIDEV IV-MECH

Medical Electronics – Transforming Healthcare Through Technology

* Introduction

Medical electronics is a field at the intersection of healthcare and engineering that focuses on the development and application of electronic devices and systems for medical purposes. From diagnostic equipment to therapeutic devices and life-support systems, medical electronics has revolutionized the way healthcare is delivered, improving patient outcomes and expanding the capabilities of medical professionals. This essay explores the importance, applications, and future prospects of medical electronics.

★The Importance of Medical Electronics

Medical electronics plays a critical role in modern medicine, enhancing the accuracy of diagnoses, the effectiveness of treatments, and the monitoring of patient health. Devices such as X-ray machines, MRI scanners, and ECG monitors provide doctors with detailed insights into the human body, enabling early detection and management of diseases. Moreover, life-saving technologies like defibrillators, ventilators, and pacemakers have become indispensable in emergency and critical care settings.

Advancements in medical electronics also support minimally invasive procedures, reducing recovery times and improving the overall patient experience. For example, robotic surgery systems and endoscopic cameras offer precision and control, enabling complex surgeries to be performed with reduced risks.

Applications of Medical Electronics

The applications of medical electronics are vast and diverse, encompassing diagnostic, therapeutic, and assistive technologies. Key areas include:

1. Diagnostic Devices

Diagnostic tools such as imaging systems (e.g., CT scans, PET scans) and laboratory equipment (e.g., blood analyzers) rely on sophisticated electronics to provide detailed and accurate information about a patient's condition. Portable devices like glucometers and blood pressure monitors allow patients to manage their health from the comfort of their homes.

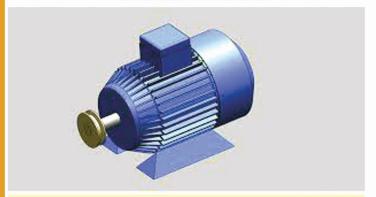
Electronic devices are integral to therapies that address various medical conditions. For instance, insulin pumps help manage diabetes, while radiation therapy machines treat cancer. Neurostimulators, such as deep brain stimulators, are used to manage neurological disorders like Parkinson's disease.

4. Assistive and Prosthetic Devices

Medical electronics is also transforming the lives of individuals with disabilities. Advanced prosthetics, hearing aids, and visual aids incorporate sensors and microprocessors to enhance functionality and improve quality of life.

★ Conclusion

Medical electronics has transformed healthcare, making it more efficient, precise, and patient-centered. From diagnostics to treatment and rehabilitation, electronic devices have become an indispensable part of medical practice. While challenges remain, continuous innovation and collaboration between engineers, healthcare professionals, and policymakers will ensure that medical electronics continues to evolve, improving lives and shaping the future of healthcare.


B.DEEPAK IV-MECH

3D MODELS CREATED BY STUDENTS

M.DINESH, IV-MECH

MOTOR CASING

P.SURYA, IV-MECH

WHEEL CHAIR

B.DEEPAK, IV-MECH

DIFFERENTIAL GEAR BOX

R.SRIDEV, IV-MECH

MOBILE STAND

C.SURIYA, IV-MECH

Namakkal - Trichy Main Road, Thottiam, Trichy (Dt) 621 215, Tamilnadu.

Mob: 80125 05000, 80125 05011, 80125 05054 email: admission@kongunadu.org

www.kongunadu.ac.in