KONGUNADU COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AUTONOMOUS)

DEPATMENT OF COMPUTER SCIENCE
AND ENGINEERING

SUBJECT CODE:24EC304

SUBJECT NAME:DIGITAL LOGIC AND
COMPUTER ORGANIZATION

UNIT-I
DIGITAL FUNDAMENTALS
* Number Systems — Decimal, Binary, Octal,
Hexadecimal, radix conversion ,1's and 2's
complements, Codes — Binary, BCD, Excess 3,
Gray, Alphanumeric codes, Boolean theorems
& Postulates, Logic gates, Universal gates, Sum
of products and product of sums, Minterms
and Maxterms, Karnaugh map Minimization

UNIT-I
BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems:
Number system 1s a basis for counting various items

The decimal number system has 10 digits:0,1,2,3,4,5,6,7,8 and 9
Types of Number Systems:

System Base Symbols
Decimal 10 0,1,2,....9
Binary 2 0,1
Octal 8 0,1,2,....7
Hexa-decimal 16 0,1,2,...9,AB,...F

Decimal Hexadecimal Binary (421/8421)

0 0 (0)000
1 1 (0)001
2 2 (0)010
3 3 (0)011
4 4 (0)100
5 5 (0)101
6 6 (0)110
7 7 0)111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Conversion among Bases

)
4

. ‘
¢ : * Hexadecimal

Binary to Octal

* Group into 3's starting at least significant bit (if the number of
bits is not evenly divisible by 3, then add 0's at the most
significant end)

» write 1 octal digit for each group

* e.g.:(00108101), to ()

001 010 101
| |] 4 2 1
1 2 5 10 0

Answer = 1254

e.g.:(001 01110011 00), to ()5

(0)10 101 101.011 1(00)

L

2 5 5.3 4 = (25534),

Octal to Binary

* For each of the Octal digit write 1ts binary equivalent
e.g.: (257)gto (),

|

010 101 111
Answer = (010101111),
e.g.: (125.62)5t0 (),

1 2 5 . 6 2

N T O R
001 010 101 . 110 010

——(1010101.11001),

Binary to Hexadecimal

* Group into 4's starting at least significant bit (if the number of
bits 1s not evenly divisible by 4, then add 0's at the most
significant end)

» write 1 hex digit for each group.

° e.g.: (-10111011)2 to ()16
(00)10 1011 1011

SR
2 B B
Answer = (2BB),,

e.g.: (001101101 710.T001H0NE) , to (),
(00)11 0110 1110 . 1001 101(0)

R R R

3 6 E . 9 A —— (36E.9A),,

Hexadecimal to Binary

* For each of the Hex digit write 1ts binary
equivalent(use 4 digits to represent)

» e.g.: (8A9.B4)4t0 (),
] A 9 . B 4

1000 1010 1001 . 1011 0100

—— (100010101001.101101),

Octal to Hexadecimal

Steps:

1.Convert octal number to its binary equivalent
2.Convert binary number to its hexadecimal equivalent
e.g.: (615.25), to ()¢

6 1 5 2 5
110 | 001 | 101 . 010 | 101]‘ Step 1
1 088 1101 PO o1
(000)1 | 1000 | 1101 . 0101 | 01(00) Step 2
1 8 D 5 4
(615.25), === (110001101.010101), = (18D.54),,

Hexadecimal to Octal

Steps:
1. Convert hexadecimal number to its binary equivalent

2. Convert binary number to its octal equivalent
e.g.: (BC66.AF),to ()g

B | C | 6 | 6 . | A | F

1011 | 1100 | 0110 | 0110 | . | 1010 | 1111 } Step 1
(00)1011110001100110.10101111(0)

001 | 011 | 110 |001 | 100 | 110 | . | 101|011 | 110 Step 2

1 3 6 |1 4 6 . 513 6

(BC66.AF), = (1011110001100110) , === (136146.536),

Converting any radix to decimal

* Converting from any base to decimal 1s done by multiplying
cach digit by its weight and summing.

* Ex: Convert (3102.12), to its decimal equivalent
N=3*43+1*42+0*41+2*4%+1*4:-14+-2%*4-2
=192+16+0+2+0.25+0.125=(210.375),,
e Ex: Determine the value of base x, if (193) | = (623),
Converting octal into decimal : (623),= 6*8>+2*814+3*8% =(403),,
(193) =1*x*+9*x!1+3*x0 = (403),,
Xx?+9x+3=4(03 =—— x=16 or -25
Negative not applicable so (193) §=(623),

Conversion of Decimal number to any Radix number
Steps:
1. Convert integer part (Successive Division Method)
2. Convert fractional part (Successive Multiplication Method)

* Steps in Successive Division Method:

» Divide the integer part of decimal number by desired base number, store
quotient (Q) and remainder (R)

» Consider quotient as a new decimal number and repeat stepl until quotient
becomes 0

> List the remainders in the reverse order

* Steps in Successive Multiplication Method:
» Multiply the fractional part of decimal number by desired base number

» Record the integer part of product as carry and fractional part as new
fractional part

» Repeat steps 1 and 2 until fractional part of product becomes 0 or until you
have many digits as necessary for your application

» Read carries downwards to get desired base number

 Convert 12.125 decimal to binary
* |nteger Part:

2112 — 0

2[6 — o
213 = 1| e (12),, = (1100),

1

 Fractional Part:

| > 0
0.125%2 = 0.25
.0
| m— (().125),, = (0.001
0.25%2 = 0.50 ()10 = ()
I__’ I v
0.50%2=1.00

e Convert 5386.345 decimal to hexadecimal
* |Integer Part:

16 | 5386 — 10 (A)
16 336 — O
16 21 —— 5

I — (5386),, = (150A),

[

 Fractional Part:

— S
0.345%16=5.52
> 8
0.52*16=8.3£ = (0.345),, = (0.585),
i > s
0.32*16=5.12 \

1’s Complement
The 1’s complement of a binary number 1s the number that results
when we change all 1’s to zeros and the zeros to ones.

1 1 0 1 0 1 0 0 Number

NOT operation
0 0 1 0 1 0 1 1 1’s Complement

2’s Complement

The 2’s complement the binary number that results when add 1 to
the 1°s complement.

2’s complement = 1’°s complement + 1

1 1 0 0 0 1 0 0 Number
NOT operation
1 1 Carry
0 0 1 1 1 0 1 1 1’s Complement
1 Add 1

0 0 1 1 1 1 0 0 2’s Complement

* 9’s Complement

The nines' complement of a decimal digit 1s the number that must be
added to 1t to produce 9. The complement of 3 1s 6, the complement of

7 1s 2.

* Example: Obtain 9’s complement of 7493
9999
-7493

2506 —-29’s complement

10’s Complement
The 10’s complement of the given number 1s obtained by adding 1 to
the 9’s complement.
10’s complement = 9’s complement + 1
Example: Obtain 10’s complement of 7493
9999 2506
- 7493 + 1

Arithmetic Operations
Binary Addition

* The addition consists of four possible elementary operations:

In the last case, sum i1s of two

digits: Higher Significant bit is

called Carry and lower significant

bit 1s called Sum.

S.No Operations
1 0+0=0
2 0+1=1
3 1+0=1
4 1+1=10(0 with carry 1)

1

+ Perform addition of (11001100), and (11011010),

1

Carry

1 0 0O | Number 1

(+)

0 | 0 | Number?2

1

| | et |

H

— o | —

o |=mlo |~
—_

1 0 Result

* Add (28),, and (15),, by converting them to binary

2143 1
2[28 0 2[15 1 22 |
2[14 0 2[7 1 B
2[7 1 2[3 1 S5 o
2(3 1 2[1 —
2[1 —

|

|
(28),5= (IH00), (15),~ (1111),

1 1 1 Carry
1 | 1 0 0 (28)10

(+) 0 1 1 1 1 (15);
1 0 1 0 1 1 (43),0

Binary Subtraction

* The subtraction consists of four possible elementary
operations:

S.No Operations
! 0-0=0 In case of second operation
2 0-1=1 (borrow 1) p==== the minuend bit is smaller
3 1.0=1 than the subtrahend bit,
hence 1 1s borrowed.
4 1-1=0

* Perform (11101100), -(00110010),

(10)(/ 10 0 10

(-) 0 1 1 0 | 0 Number 2

S

IV O o (1 |x |® |0 |Numberl
0
0

1 0 1 1 1 1 0 Result

Binary Subtraction using 1’°s complement

* Perform subtraction using 1’s complement (11010), -
(10000),

Step 1: 1’s complement negative number

(10000), —— (D).
Step 2: Add (11010), and (),

1 1 | 1
1 1 0 1 0
0 il il il il
| 0 1 0 0 1
Add end-around
>§ = carry
0 1 0 1 0

Note: If carry 1s generated then the result is positive and in the true form so

aa carry to the result to get final result

* Perform subtraction using 1’s complement (15),,-(28),,
Binary equivalent:(1111), -(11100),

Step 1: 1’s complement negative number

(11100),

(+)

— (),
Step 2: Add (1111), and (SE8I),
1] 1|11
0| 1 |11 1 (I5)19
g6 @ 0 @ 1,s complement of (28),
1 0 0| 1 0 Result

In this case the carry is not generated then the result is negative and in the

1’s complement form

0

1

1

0

1

Verification (1's complement form of result)
(13)y9

Binary Subtraction using 2’s complement

* Perform subtraction using 2’s complement binary arithmetic (147),,

-89,

« Step 1: Binary equivalent (010010011), -(01011001),
« Step 2: Find 2’s complement of (89),,

0 1 0 1 1 0 0 1 | Binary equivalent of (89),,
1 0 1 0 0 1 0 1’s complement of (.)10
1 Add 1
] 0 il 0 0 il il 1 2’s complement of (89),,
1 |1 1 1 1
0 0 1 0 0 1 1 | Binary equivalent of (147),,

|1 1 0 0 1 1 1 2’s complement of (89),,
0 1 1 1 0 1 0 Result

Step 1: Binary equivalent (101010), -(
Step 2: Find 2’s complement of (68),,

Binary Subtraction using 2’s complement
* Perform subtraction using 2’s complement (42),, —(.)10

1000100),

1 0 0 0 1 0 0 | Binary equivalent of (68),,
0 1 1 1 0 1 1 1’s complement of (68),,
1 Add 1
0 1 il il il 0 0 2’s complement of (68),,
1 1
1 0 1 0 Binary equivalent of (42),,
(+) il 1 il il 2’s complement of (68),
1 0 0 1 Result

1 1 0 0 0 Result

0 0 1 1’s complement
1 2’s complement

0 0 ! 1 0 26),,

Binary Multiplication

Rules for Binary Multiplication are:

S.No | Operations
1 0*0=0
2 0*1=0
3 1*0=0
4 1*1=1

Multiply (101.11), and (110.01), using binary multiplication method

O [1].]1 |1]|Multiplicand
X 1 10 |. |0 [1|Multiplier
1 10 |1]1 |1
0 (00 [0[O0 [O
000 1[0 (0]0]0
1 {0 (1|1 |1 [0]O |O
1 1 {11 1]0 (0]0 |0
1{0{0 |O |1 [1 |1 |1{1 [1]|Final

Fractional digits in the final product=Fractional digits in multiplicand +Fractional digits in
multiplier =2+2=4 - (101.11), x (110.01), = (100011.1111),

Binary Division

Rules for Binary Division are:

Divide (11011011), by (110),

No.

Rule

0+-1=0

l1+=1=1

Binary Codes

* When numbers, alphabets or words are represented by a
specific group of symbols 1.¢., they are encoded

* The group of symbols used to encode them i1s called codes.
The digital data 1s represented, stored and transmitted as
groups of binary digits (bits)

* Group of bits--- binary code---- numeric and alphanumeric
code

Classification of binary codes

Codes
Weighted Non-weighted Reflective Sequential Alphanumeric Error detecting
codes codes codes codes codes and correcting
codes
J 1 * Excess - 3 « 2421 « 8421 +ASCII » Parity
Binary BCD * Gray * 5211 * Excess - 3 + EBCDIC * Hamming
* Five - bit * Excess - 3 » Hollerith
BCD codes
* 8421
« 2421
« 3321
* 4221
* 5211
* 5311
+ 5421
+ 6311
7421
17421
+ 842 1

* Weighted codes:

— In weighted codes, each digit position of the number
represents a specific weight

— Examples: 93->(1001)(0011) - 8421 code
93-2>(1100)(0011) =>5421 code
* Non-weighted codes :

— Non-weighted codes are not assigned with any weight to
cach digit position, 1.e., each digit position within the
number 1s not assigned fixed value

— Excess-3 and gray codes are the non-weighted codes
* Reflective codes:

— A code 1s said to be reflective when the code for 9 is the

complement for 0, the code for 8 1s complement for 1, 7 for
2,6 for 3 and 5 for 4.

— Like 2421,codes 5211 and excess-3 are also reflective.
— The 8421 code 1s not reflective

* Sequential codes

— In sequential codes each succeeding code 1s one binary
number greater than its preceding code.

— This greatly aids mathematical manipulation of data

— The 8421 and excess-3 are sequential, whereas the 2421
and 5211 codes are not sequential

* Alphanumeric codes

— The codes which consists of both numbers and alphabetic
characters are called alphanumeric codes.

— Most of these codes, however, also represent symbols and
various instructions necessary for conveying intelligible
information

— The most commonly used alphanumeric codes are: ASCII,
EBCDIC and Hollerith code

* Error detecting and correcting codes

— When the digital information in the binary form 1s
transmitted from one circuit or system to another circuit or
system an error may OCcCur.

— This means the signal corresponding to 0 may change to 1
or vice-versa due to presence of noise

— To maintain data integrity between transmitter and receiver,
extra bit or more than one bit are added in the data.

— These extra bits allow the detection and sometimes the
correction of error in the data.

— The data along with the extra bit /bits form the code

— Codes which allow only error detection are called error
detecting codes and codes which allow error detection and
correction are called error detecting and correcting codes

* BCD(Binary Coded Decimal) codes

— BCD 1s a numeric code in which each digit of a decimal
number 1s represented by a separate group of 4-bits.

Decimal BCD Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

5 8 Decimal
BCD
0101 | 1000 Code
Advantages:

Easy to convert between it and decimal

Disadvantages:

Less efficient
Arithmetic operations are more complex

Excess-3 code

— The excess-3 code can be derived from the natural BCD code by
adding 3 to each coded number.

— It 1s a non-weighted code

— It is a sequential code

— In excess-3 code we get 9°s complement of a number by just
complementing each bit. Due to this excess-3 code is called self-

complementing code or reflective code.
0 0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

O |00 ([I[N DN |~ W |~

* Gary code

— Gray code 1s a non-weighted code and 1s a special case of unit-distance
code

— In unit distance code, bit patterns for two consecutive numbers differ
in only one bit position.

— These codes are also called as cyclic codes.
— The gray code 1s also called reflected code.

Application of Gray code

* Let us consider an application where 3-bit binary code 1s provided to
indicate position of the rotating disk with the help of brushes.

* If one brush 1s slightly ahead of the other, an 180° error occur in the
disk position.

* When the gray code 1s used to represent disk position then error due to
improper brush alignment can be reduced. This is because the gray

code assures that only one bit will change each time the decimal
number 1s incremented.

* In 3-bit code probability of error 1s reduced upto 66% and in 4-bit code
it 1s reduced upto 75%. This 1s an advantage of gray code.

Gray to Binary Conversion:
Exclusive OR operation

A (B |A®B
010 0
0| 1 1
110 1
1 |1 0

Convert gray code 101011 into its binary equivalent.

1 0 1 0 1 1 Gray code
|_ {I { ‘ { | { I _/J - Exclusive OR operation
1 1 0 0 0 | Binary code
(101011) ., = (110010),

Binary to Gray code:

Convert 10111011 1n binary 1nto its equivalent gray

code.

/'

Exclusive OR
operation

ﬂl—ﬂo J_lll J_Ill _[ll J-.Jlo—

=y

Binar

y
code

1

1

0

0

1

Gray
code

BCD Addition

Case 1: Sum equals 9 or less with carry 0

Addition of 3 and 6 in BCD 1 1 Carry
0 0 1 1 BCD for 3
1 0 0 1 BCD for 9
Case 2: Sum greater than 9 with carry 0
0 1 1 0 BCD for 6
+ 1 0 0 0 BCD for 8

Answer

* Case 3: Sum greater than 9 with carry 0

Carry
1 0 0 0 BCD for 8
+ 1 0 0 1 BCD for 9

BCD Subtraction using 9’s complement

Perform (46),,—(22) ,,1n BCD using 9’s complement.
Step 1: Find 9’s complement of 22

9’s complement of 22=(99-22)=77

Step 2:Add 46 and 9’s complement of 22

1 0 1 1 |1 1 |0 1 Invalid BCD numbers

1 0 1 1 |1 1 |0 1 Invalid BCD numbers

1 | Add end around carry
0O [0 (1 |O |0 |1 |0 |[O |[Result(BCD of24)

Since there is carry the result is positive and true

BCD Subtraction using 9’s complement

Perform (24),,—(56) ;,1n BCD using 9’s complement.
Step 1: Find 9’s complement of 56

9’s complement of 56=(99-56)=43

Step 2:Add 24 and 9’s complement of 56

O (1 |1 |00 |1 |1 |1 |[BCDof 67

Since there is 0 the result is negative

Step 3: Take 9’s complement of answer
99-67=32=224-56=32

BCD Subtraction using 10’s complement

Perform (46),,—(22) ,,1n BCD using 9’s complement.

Step 1: Find 10’s complement of 22

10’s complement of 22=9’s complement of 22+1 =(99-22)+1=78
Step 2:Add 46 and 10’s complement of 22

1 Carry

1 0 1 1 |1 1 |1 0 | Invalid BCD numbers

1 0 1 1 |1 1 |1 0 | Invalid BCD numbers

1{0 (0 {1 (0[O0 (1|0 |O
Carry 1s ignored
O [0 |1 [(0]0 (1 [0 |O |[Result(BCDof24)

Since there is carry the result is positive and true

BCD Subtraction using 10’s complement

Perform (24),,—(56) ;,in BCD using 10’s complement.
Step 1: Find 10’s complement of 56

9’s complement of 56=(99-56)+1=44

Step 2:Add 24 and 10’s complement of 56

O |1 |1 (0|1 (0|0 |0 |BCDof 68

Since there is 0 the result is negative

Step 3: Take 10’s complement of answer
(99-68)+1=32=224-56=32

Excess-3 Addition:
a)Carry is generated:8+6

1 4 Result in decimal

Excess-3 Addition:
a)Carry is not generated:1+2

O[1]0] 0 |1 Carry 1s 0

3 Result in decimal

Excess-3 Subtraction:
a)Carry is generated:8-5

0

0 0 Excess-3 for 5

0 1

Complement

Excess-3 for 8

Complement of 5 in Excess-3

Carry 1s 1

Add 3

Add end-around carry

Excess-3 for 3

Excess-3 Subtraction:

a)Carry is not generated:5-8

0

Excess-3 for 8

0 1

0 0

Complement

|

Complement of 8 in Excess-3

Carry 1s 0

Boolean Algebra

* Boolean algebra 1s a mathematical system that defines a series
of logical operations (AND,OR,NOT) performed on sets of
variables (a,b,c,....).

* When stated in this form, the expression 1s called a Boolean
equation or switching equation.
Terminologies :

Variable: The symbol which represent an arbitrary elements of
an Boolean algebra 1s known as variable.

Any single variable or a function of several variables can have
either a 1 or 0 value.

Constant: In expression Y=A+1, the first term A i1s a variable
and the second term has a fixed value 1. So 1 is a constant here.
The constant may be 1 or 0.

Complement: A complement of a variable 1s presented by a
“bar” over the letter and sometimes denoted by ().

Example: 4 is the complement of the variable A, if A=0 D4 =1
and A=1>A4 =0

Literal: Each occurrence of a variable in Boolean function either
in a complemented or an uncomplemented form is called a literal.

Boolean Function: Boolean expressions are constructed by
connecting the Boolean constants and variables with the Boolean
operations. These Boolean expressions are also known as
Boolean formulae.

We use Boolean expressions to describe the Boolean functions.
Example: f(A,B,C)= (A+ B)C

Properties of Boolean Algebra
* Closure Property

Closure(a): Closure with respect to operator +: when two binary
elements are operated by operator +, the result is a unique binary
clement.

Closure(b):Closure with respect to operator .(dot): when two
binary elements are operated by operator .(dot), the result 1s a
unique binary element.

* Identity property: A.I=1.A=A
-
A
1 A
L

 Commutative property
Commutative with respect to +: A+B=B+A
Commutative with respect to . : A.B=B.A

Distributive property
A.(B+C)=(A.B)+(A.C)
A+(B.C)=(A+B).(A+C)

Associative property

A+(B+C)=(A+B)+C
(A.B).C=A(B.C)
Complement property

AA=0 A+A=I1
Idempotency property
A.A=A A+A=A
Absorption property

A+AB=A(1+B)=A
A(A+B)=A+AB=A
Involution property

A=A

De Morgan's Theorem

Theorom:1

the complement of the product of all the terms

is equal to the sum of the complement of each
term.

Theorom:2

* the complement of the sum of all the terms is

equal to the product of the complement of
each term.

De-Morgan’s theorem

A| B| AB | A+B A| B |A+B | AB

0] 0 | I 0| 0 1 I

0] 1 I 1 0| 1 0 0

1| 0 | 1 110 0 0

1] 1 0 0 1|1 0 0
Principle of duality:

The principle of duality theorem says that, starting with
a Boolean relation, we can derive another Boolean
relation by,

Changing the OR sign to an AND sign

Changing each AND sign to an OR sign and
Complementing any O or 1 appearing in the expression.
Dual of relation 2 A+A=1 is A.A=0

e Consensus Law:

* In simplification of Boolean expression, an expression of the form
AB+AC+BC the term BC is redundant and can be eliminated to

form the equivalent expression AB+AC. The theorem used for this
simplification 1s known as consensus theorem and it 1s stated as

AB+AC+BC=AB+AC

Proof:

AB+AC+BC= AB+AC+(A+4)BC
= AB+AC+A BC +4 BC
=AB(1+C)+AC(1+B)

=AB+AC

* Prove the following Boolean identities
(x1+x2) (X7 X3 + x3) (X7 + x1X3) = X1X3
(x1+x2) (1 X3 + x3) (3, + x1%3)
= (X1+x2) (07 X3 + x3) (%5 . x13)
= (x1+x2) (01 X3 + x3) (2. (1 + X3))
= (x1+x2) Oy X3 + x3) (0 X7 + 2x,%3)
= (x1+x5) (X7 + x3) (X X1 + x,%3) (since A+AB = A + B)
= (X1X1 + x2X7 + x3x3 + X3x3) (X2 X1 + XX3)
= (0 + x,x7 + x1x3 + x,x3) (X, X1 + X,X3) (since AA = 0)
= X2X1X9 X1 + X1X3Xp X1 + X2X3X5 X1 + XX XpX3
+ X1X3X5X3 + XoX3X7X3
= X9X1X2 X1 + 0+ XoX3X5 X1 + X2X{X,X3 + 0+ 0
= Xy X1 t X2X3X1 + X{X2X3
=x, X1(1+x3+%x3) (Since 1+A=1) = x, X3

* Prove the following using DeMorgan’s theorem
[(x+y)' +x+y) ' =x+y

=((x+y)+(x+y)
=x+y)x+y)
=x+y)x+y)
=(x +vy) (since A.A=A)

Boolean expression

* Boolean expressions are constructed by connecting the Boolean
constants and variables with the Boolean operations.

f(A,B,C,D)=A+ BC+ACD
Sum of Product form:(SOP)

l Sum

f(A,B,C) = AC + ABC

Also known as disjunctive |
normal form or disjunctive Product Terms
normal formula Jl Jl Sum

f(P,Q,R,S) =PQ+ QR+ RS

L]

Product Terms

* Product of Sum form (POS)
Product

f(4,B,C)=(A+B) . (B+ C)

I

Sum terms

—)

Conjunctive normal formula
or conjunctive normal form

l l Product

f(P,O,R,S) =P+Q).(Q+R).(R+S)

I

Sum terms

Standard (Canonical) SOP &
Standard (Canonical) POS Form

If each term 1n the SOP form contains all the literals then the SOP
form 1s known as standard or canonical SOP form.

Each individual term in the standard SOP form is called minterm.
f(A,B,C) = ABC + ABC + ABC

If each term 1n POS form contains all the literals then the POS form
1s known as standard or canonical POS form.

Each individual term in the standard SOP form is called maxterm.

f(4,B,C)=(A+B+C).(A+B+ 0)

Converting Expressions in Standard SOP form
Step 1: Find the missing literal in each product term 1f any.

Step 2:AND each product term having missing literal(s) with term(s) form
by ORing the literal and its complement.

Step 3:Expand the terms by applying distributive law and reorder the literals
in the product terms.

Step 4:Reduce the expression by omitting the repeated product terms 1f any.
Example: Convert the given expression in standard SOP form.
f(A,B,C)=AC+AB+BC

Solution:

Step 1: Find the missing literals in each product term

f(A,B,C)=AC+AB+BC

‘ | » Literal A is missing
Literal C is missing

Step 2: AND product term with missing (literal + its complement)
l l l Original product terms

f(A,B,C)=AC . (B+ B)+AB . (C+ C)+BC . (A+ 4)

I I I Missing literals and
their complements

Step 3:Expand the terms and reorder the literals
Expand: f(A,B,C)=ACB + ACB +ABC+ABC +BCA + BCA

Reorder: f(A,B,C)=ABC + ABC+ABC+ABC +ABC+ABC
Step 4: Omit repeated product terms

f(A,B,C)- - ABC+RB+ABC +HBB+ABC

f(A,B,C)=ABC + ABC+ABC +ABC

Converting Expressions in Standard POS form
Step 1: Find the missing literal in each sum term 1if any.

Step 2:0R each sum term having missing literal(s) with term(s) form
by ANDing the literal and its complement.

Step 3:Expand the terms by applying distributive law and reorder the
literals 1n the sum terms.

Step 4:Reduce the expression by omitting the repeated sum terms if
any.

Example: Convert the given expression in standard POS form. Y=A .
(A+B+C)

Solution:

Step 1: Find the missing literals in each sum term
Y(A,B,C)=A . (A+B+(C)

Literals B and C are missing

Step 2: OR sum term with (missing literal . its complement)
Y=[A+(B. B)+ (C. C)]. (A+B+C)

Step 3: Expand the terms and reorder literals

Y=(A+B).(A+B)+ (C. C)]. (A+B+C)

Y=(A+B+C).(A+B+C) . (A+B+ (). (A+B+(). (A+B+C)

Step 4: Omit repeated sum terms

Y=(A+B+C). (A+B+C) . (A+B+ C). (A+B+ C). (A+B+C)
Y=(A+B+C). (A+B+C) . (A+B+ C). (A+B+ C)

M Notations: Minterms and Maxterms

Each individual term in standard SOP form is called minterm and
each individual term 1n standard POS form is called maxterm.

In general, for a n-variable logical function there are 2 minterms
and an equal number of maxterms.

Each minterm 1s represented by m. and each maxterm is represented
by M. , where the subscript 1 1s the decimal number equivalent of the
natural binary number.

* X, m. = denotes sum of product form(SOP)
* II, M, = denotes product of sum form(POS)

Minterms and Maxterms for three variables

Decimal Variables Minterms Maxterms
(SOP) (POS)
A| B | C m, M,
@G| @ | d)
0 0O 0| O AB C=m, A+B+C =M,
1 0 0|1 AB C=m, A+B+C =M,
2 0 1 0 ABC=m, |A+B+C =M,
3 0 1 1 ABC=m, |A+B+C =M,
4 1 {0 | 0]| ABC=m, | A+B+C=M,
5 110 |1 ABC=m; | A+B+C =M,
6 1| 1| 0| ABC=m A+B+C
:M6
7 1|1 |1 ABC=m, A+B+C
—i,

Minterms
and
Maxterms
for four
variables

Decimal

Variables

Minterms

Maxterms

B

C

m-:

1

M.

1

0

0

)

O | X[QI[N N[|WIND|—=]|O

[E—
-

U
[E—

[E—
[\

[E—
W

[E—
AN

[E—
(V)]

Examples:
f(A,B,C)=ABC + A BC +AB C + ABC
=m, + My + Mg + 1My
=2m(3,5,6,7)
Y=(A+B+C). (A+B+C) . (A+B+ C). (A+B+ C)
=M,. M, . M, . M,
=ntM(0,1,2,3)

Complements of Standard Forms:
f(A,B,C)=m;+m;+mg+m;=M,. M;.M,. M,
f(A,B,C)= Xm(3,5,6,7) =nM(0,1,2,4)

In case of four variables,

f(A,B,C,.D)=Xm(0,2,3,5,6,7,11,13,14) = tM(1,4,8,9,10,12,15)

Express F=A+B’C as sum of minterms.

Solution:
A+BC=AB+B)(C+C)+(A+ A)BC
= (AB + AB)(C + C) + (ABC + ABC)
= ABC + ABC + ABC + ABC + ABC + ABC
=¥m(7,5,6,4,5,1)
=xm(1,4,5,6,7)

Express the following F=XY+X’Z in product of maxterm.

K-map Minimization

During the process of simplification of Boolean
expression we have to predict each successive step

We can never be absolutely certain that an expression
simplified by Boolean algebra alone 1s the simplest
possible expression

On the other hand, the map method gives us a
systematic approach for simplifying a Boolean
expression

The map method, first proposed by WVeitch and
modified by Karnaugh, hence i1t is known as the
Veitch diagram or the Karnaugh map.

Advantages of K-Maps

The K-map simplification technique is simpler and
less error-prone compared to the method of
solving the logical expressions using Boolean
laws.

It prevents the need to remember each and every
Boolean algebraic theorem.

It involves fewer steps than the algebraic
minimization technique to arrive at a simplified
expression.

K-map simplification technique always results in
minimum expression if carried out properly.

MINIMIZATION

Example: Two irredundant expressions for (w,x,y,z) = >{0,4,5,7,8,9,13,15)

wx wXx

‘DhNai oDl
01 KE/ Y 1) 01 (1 q U
LY D

10 10

11

(a) f=xyZ + wxy'+ wy'z + xz (b) f=w'y'zZ'+ wx'y'+ xzis the
IS an irredundant expression. unique minimal expression.

MINIMIZATION

Example: flw,x,y,z) = 2(1,5,6,7,11,12,13,15)

Only one irredundant form: f= wxy’+ wyz + wxy + wy’z
Dotted cube xz is redundant

WX
yz 00 01 11 10

i
U

or| 7D
SHIED

—_—— =
o | f— — -

ab

11

10

One-Variable, Two-Variable, Three-Variable and Four-
Variable Maps

* The basis of this method i1s a graphical chart known as Karnaugh
map (K-map)
* [t contains boxes called cells.

* Each of the cell represents one of the 2" possible products that can
be formed from n variables.

e Thus, a 2-variable map contains 22 =4 cells, a 3-variable map
contains 2° =8 cells and so forth.

A B BC 00 01 11 10
) A\OB 1B A\EEEC BC BC
04 04
1A 1A

1

1-Variable map .
(2 cells) 2-Variable map 3-Variable map

(4 cells) (8 cells)

4-variable map (16 cells)

D ¢cD CD CD (D
AB\. 00 01 11 10

One-Variable, Two-Variable, Three-Variable and Four-
Variable Maps

Representation:

B _
A A\ 0B 1B BC 20_ 21 11 10_
0 AN _BC BC BC

A BC
m, 0A m, | m —
1 [m, LA my | m, 0A4 |my|m | my | My
1-Variable map 2-Variable map 3-Variable ma
(2 cells) (4 cells) (8 cells) '
A B . BC 00 01 11 10
A\ 0B 1B A\ BT BC BC BT
2 0 0A 0 1 0A4 0 1 3 2
I
1A 2 3 1A il s 7 6

4-variable map (16 cells)

D ¢D ¢cpD CD (D
AB 00 o1 11 10
00 m, | m; | m; | m,
AB
01 my, | mgy | m; | mg
AB
11 my, | M3 [Mys | My
AB
10 mg | my | My | my,
AB

cD CD

01

11

<

12

13

15

14

11

10

One-Variable, Two-Variable, Three-Variable and Four-

Variable Maps
Representation(POS):
B
A A\ 0B 1B B+C 00 01 11 10
A\ B+C B+« B+C B+C
. PA L M L 0A|[M, [M | M| M
1]‘\/I1 1 Z M2 M3 _ 0 1 3 2
14 | My | Mg | M, | M,
l—Va;abhe map 2-Vaérl1abﬁ: map 3-Variable map
(2 cells) (4 cells) (8 cells)
B +C 00 01 11 10
A A\ 0B 1B K B+C B+ B+C B+C
0 0 A 0 A 1 2
1 14 14 5 7 6

4-variable map (16 cells)

+D
A+B

00
A+B

01
A+B
11
A+B
10
A+B

C+D C+D C+D C+D
00 01 11 10
MO Ml M3 MZ
M, | Mg | M, | M,
M12 M13 MIS M14
MS M9 Mll MIO

C+D
A+B

00
A+B

01
A+B

10
A+B

C+D C+D

00

01

C+D
10

12

13

15

14

11

10

Plotting a K-map

Cell: the smallest unit of a Karnaugh map, corresponding to one
line of a truth table. The input variables are the cell’s co-ordinates
and the output variable 1s the cell’s contents.

14

10

I
CO] O o o
i
O A | O e ™ N "o -
O
QAN —~ v =~
1O o
|1 = a %
™~ O < Y
o 8 o
()]
BO_B]BlB OB
< Ot QOIN d«« ~ <
~
-
w] | —~ | OO | O | - | O] = | OO = ||| —-= O] -] —
o
O |~ | | — | OO - | O] -~ | OO - | OO - || —]OO | —
S|l |l | V|l |~ |||~ |- | O] |~
Z
2.
= S|l |l | o~~~ |||l | OO~ —]| -]~
e
o |l o |l o |locolocolo|lolo |l — | — | —]—]—]|—|]—| —
M S|l—=|la|len|d|v|lo|c|lo|la|lS (D@22

Representing Standard SOP on K-Map
Plot the Boolean expression Y = ABC + ABC + ABC on the Karnaugh
map. BC 00 01 11 10

A\ EC BC BC &C

04 |0,/2,]0 ;|0 ,
1A [0,l0|1,|1 ,

Plot the Boolean expression Y = ABCD + ABCD + ABCD + AB@EBD +

ABCD + ABCD on the Karnaugh map. — o
D ¢D ¢D CD CD
AB 00 o1 11 10

00

AB 0 1] 3 2
01

AB sl 5| 7 6

11
AB

10

AB

12 13| 15 14

Represent the following in Karnaugh map f(a,b,c)=xm(1,4,6,7)

00 01 11 10
a bc bc bc bc
l1a [1,/0,]2,]21

Represent the following in Karnaugh map f(w,x,y,z)=>xm(1,2,5,6,7,11,14)

W YyZ Yz Yz YZ
X o0 01 11 10

00
WX 0 1| 3 2
01
W X 4 5 7 6
11
WX 12| 13| 15 14
10
wx

s| 9 | 1 10

Representing Standard POS on K-Map:
* Plot the Boolean expression Y=-. (A+B+C) . (A+B+ C). (A+B+ €)

+C 00 01 11 10
A B+C B+ B+C B+C

0 A IO 01 0302

* Plot the expression F(A,B,C,D)Z_. (A+B+C+D) . (A+B+ C + D).
(A+B+ C *+ D). (A+B+C + D) R —
C+b CGD C+D C+D C+D
N

00 01 11 10
00
A+B 0 1 3 2
01
A+B 4 5 7 6
11
A+B
12 13 15 | 14
10
A+B

* Represent the function in k-map f=nM(1,4,6,9,11)

C+D C+D C+D C+D C+D
A+B 00 01 11 10

AOOB 1 1 1
+
0o | 01 3 2
01 1 1 0
AME10 5 7 6
11
A+B 1 7
1 1
12 13 15 | 14
10
A+B 7
1 0
s | Oy 11 10

Grouping cells for simplification

* Once the Boolean function is plotted on the Karnaugh
map we have to use grouping technique to simplify
the Boolean function.

* The grouping is nothing combining terms in adjacent
cells.

* Two cells are said to be adjacent if they conform the

single change rule.,1.e., there 1s only one variable
difference between co-ordinates of two cells.

Grouping Two Adjacent Ones(Pair)

00 = ._|_, 00
5 0 1 3 2 1 0|1 1 [3|1 2
4 5 7 6 I s]5 Ty] ¢
11
o L PR B e 11 l l
12 13 15 14 12] 1] 15 14
19 —_— 10 l [[
—
8 9 1 10 8 9 11 10

Neighbouring cells in the

Neighbouring cells in)
5 g column are adjacent

the row are adjacent

00

01

11

10

Adjacent cells

(———
=

0 1 3 2
)

4 5 7 6
)

12 13| 15 14
.}

8 9 11 10

Leftmost and corresponding
rightmost cells are adjacent

S||92 uadelpy

Top and corresponding bottom

cells are adjacent

\ 00 01 11 10

00 —-—
0 1 3 2

01
4 5 7 6

11
12 3 15 14

10 -
8 9 11 10

Y = ABC + ABC

BC 00 01 11 10
/\Efﬁc BC BC
0A 0 | 1; 2
1A 4| 5|1, 6

BC 00 01 11 10
A\EC BC BC BC
04 [0,]0, /1] 0,
1A [0, os\i} 0,

Y = BC

0A |0y

BC 00 01 11 10
A\EC BC BC BC
a, 13| 0,
0,/0,]| 0

1A [0,

Y = ABC + ABC + ABC

N\

00 01 11

BC BC BC

0A

0,1

1A

04

12

15

Il
o]
o))
)

14 Y

11

10

AN\

00 01 11 10

BC BC BC BC

Oy

—

1,

13| 0,

0,

05

1, | 19

Grouping four adjacent ones(Quad)

C 00 01 11 10
A\KEE BC BC BC
04 |0,/0,]0,]| 0,
1A {T,]15]1;] T

D ¢D ¢cD CD (D
AB\L 00 01 11 10
0 [o|of0o] 0
AB 0 1 3 2
01 | 0 [(1] 1) O
HNARE
11 0|1 ZK
A 12 13 15 1
10_ 0|0
AB | 0 8 9 11 10

D
AB

BD

00

AB
01

AB

11
AB

10

AB

CD ¢cD CD (D
00 o1 11 10
0 |/1\| 0 0
ol 1] 3 2
0| 1|0 0
4 i’ 5 71 6
0 | 0| 0
12| 13 15 14
7/lo| o
Os| vo| u 10
CcD

cD cD CD ¢D
00 (01 11 10
_U 0| ol |1
™ 0| 1] 3 2 |

o ol ol o

4 5 7 (]

0 g | 0 0

12 13 15 14
'_1? 0ol o |1 [

8 9 11

S

cD c¢D CD CD
00 01 11 10
ol ol o] o
0 1 3 2
0 0| 0 0
4 5 7 (1]
Tnlol ol (1]
1: 13 15 14
[1] o]o|lt \\
8 0 11 10

Grouping Eight Adjacent Ones (Octet)

D ¢D CD CD (D D ¢cD ¢cD CD (D
AB\ 00 01 11 10 AB\ . 00 01 11 10

W | 0 |(1] 1) 0 W | 0| 0|0 0
AB 0] 1] 3 2 AB 0| 1] 3 2
01 | 0 ||1| 1] O 01 |1 [1] 1] 1
4B | 4 5 7] 6 . . 5 71 6
11 0 |1]| 1 0 1 71 | 1| 1 1
AB 12| 13| 15 14 AB 12| 13| 15 14
10 101 0 10 00| 0
AB | 04| o] 1i\\ 10 AB | 04 9| 1 10

oo

cD ¢cp CDO ¢D
'DD o1 11 10 |
7 1|1 d
0 1 3 2
o ol o| o
4 5 7 6
ool o o
12 13 15 14
T 7)1 1 J
[s 9| n 1

\g cD cp CO ¢D
AB_ 00 01 11 10
00 7] o| o | f1
AB o 1| 3 !z—
o1 | 1| 0| 0|[1
AB 4 5 7 6

11 7 0| 0 1
= 12 13 15 14
0 | 1| 0| o0 |[1

A 8 9| 1 T

o]

Illegal Grouping

D ¢D ¢cDb CD (D
AB\L 00 01 11 10
90_ 0 0 -1 0
AB 0 1 3 2
o1 |0 |10 o
AB 4 5 7 6
11 0|l ol o] 0
AB

12 13 15 14
10 0l 0| 0
AB O 8 9 11 10

Diagonal grouping is

illegal

D ¢D ¢cbD CD (D
AB\ 00 01 11 10
0 | 0| A[1) 0
AB 0 1 | 3 2
01 0 1| 0 ﬂT
AB 4 S H 7 6
Ll 0 1 0 1
A 2|l 15])
0 | 0 ||1f O 1
AB 8 0 11 0

Grouping odd number
of cells is illegal

* Reduce the following using k-map

Y= ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

D ¢cD CcD CD CD
AB\ 00 01 11 10

00

AB |1 ,| 0, 1, |1
01
ABlo,| o510 ,|0
11
AB]12 013 015 114
10

AB | 15| 0y |1y |1y

a)F(a,b,c,d)=X(0,1,2,4,5,7,11,15)
b)F(A,B,C)=X(0,3,4,7)

¢) F(A,B,C,D)=x(0,3,5,7,8,9,10,12,15)

d)Minimize Y=ABCD + ABCD + ABCD + ABCD

Essential Prime Implicants

After grouping the cells, the sum terms appear in the k-map are
called essential prime implicants groups.

Some cells may appear in only one prime implicants group; while
other cells may appear in more than one prime implicants group.

The cells which appear in only one prime implicant group are called
essential cells and corresponding implicants are called essential
prime implicants.

Incompletely Specified Functions(Don’t Care Terms)

In some logic circuits, certain input conditions never occur,
therefore the corresponding output never appears. In such cases the
output level is not defined, it can be either HIGH or LOW. These
output levels are indicated by ‘X’ or ‘d’ in the truth tables and are
called don’t care outputs or don’t care conditions or incompletely
specified functions.

* Find the reduced SOP form of the following function.
F(A,B,C,D)=£m(1,3,7,11,15)+2d(0,2,4)

D ¢cD CD CD (D
AB\. 00 01 11 10

0 | x|z7|1] X
AB 0 1 3 2
Q] X 0| 1 0
AB 4 5 7 6
11 | 00| 1] 0
A 12 13 15 14
10 01| 0
AB 10 8 9 11 10

F(a,b,c,d)= £(0,2,4,5,6,8,10,15)+ Xo(7,13,14)

F(W,X,Y,Z)= £m(0,7,8,9,10,12)+ £d(2,5,13)
F(a,b,c,d)= £(0,2,4,5,6,8)+ Z¢(10,11,12,13,14,15)

Simplification of POS Expression

* Minimize the following expression

(A+B+C+D)(A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)(A
+B4+C+D)A+B+C+D)A+B+C+D)

C+D C+D C+D C+D C+D
A+B 00 01 11 10

00
A+B 0 1 3 2

01
A+B 4 5 7 6

11

A+B
12 13 15 | 14

10

A+B
8 9 1 10

* Reduce the following function using K-map technique
f(A,B,C,D)=nM(0,2,3,8,9,12,13,15)

C+D C+D C+D C+D C+D
A+B 00 01 11 10

00
A+B

01
A+B

12

13

15

14

10
A+B

11

10

Reduce the following function f(A,B,C,D)=r(0,3,4,7,8,10,12,14)+d(2,6)
Simplify f(x,y,z)= ntM(3,5,7)

Simplify F(A,B,C,D)=Xx(0,1,2,5,8,9,10) in sum of products and product
of sums using K-map.

Simplify the Boolean expression in sum of products and product of
sums using K-map,AC + BD + ACD + ABCD

Five variable K-Map

F(A,B,C,D,E)=xXm(0,5,6,8,9,10,11,16,20,24,25,26,27,29,31)

A (0)

DE DE DE DE
BCN\ 00

01

11

DE

00

BC

01

BC

11
BC

12

13

15

14

10

BC

11

10

A1)

D
BC

00
BC
01
BC
11
BC

10
BC

E DE
00

DE
01

DE
11

DE

10

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26

Rules for simplifying logic function using K-map are:

Group should not include any cell containing a zero.

The number of cells in a group must be a power of 2,such as 1,2,4,8
or 16.

Group may be horizontal, vertical but not diagonal.
Cell containing 1 must be included in at least one group
Groups may overlap.

Each group should be as large as possible to get maximum
simplification.

Groups may be wrapped around the map. The leftmost cell in a row
may be grouped with the rightmost cell and the top cell in a column
may be grouped with the bottom cell.

A cell may be grouped more than once. The only condition is that
every group must have at least one cell that does not belong to any
other group. Otherwise redundant terms will result.

We need not group all don’t care cells, only those that actually
contribute to a maximum simplification.

Limitations of Karnaugh map

* The map method of simplification 1s convenient as long
as the number of variables does not exceed five or six.

* As the number of variable increases it 1s difficult to make
judgments about which combinations form the minimum
expression.

* Another important point 1s that the K-map simplification
1s manual technique and simplification process 1s heavily
depends on the human abilities.

NOT GATE:

SYMBOL:

A— "o =R

Ta04h

TRUTH TABLE :

T-
o = |3

Logic gates

PIN DIAGRAM:

LY
K
[

7+Gnd

\J

|

I

VYoo

12

11

10

AND GATE:

SYMBOL: PIN DIAGRAM:
v,
ﬁ =
jﬂﬁ ! Vee 14
B 74080 2
| 13
TRUTH TABLE .
C
3
Al B | AB 1
L I 4 4 1
5
IR i u 0
1|0 I :
|| 1 :
b

7+Gnd g

OR GATE:
SYMBOL :

A

) RS

B 7432

TRUTH TAELE

PINDIAGRAM:

B A+B

= | O =
]
[}

Iy
||
[

—
o

13

NOR GATE:

PINDIAGRAM :

SYMBOL -
S Lt
LAt
B 7102
TRUTH TABLE

A E | A

a a i

0 1 1

1 0 1

1 1 0

o

-Gnd

LT[
]

Voo

13

12
11

10

2-INPUT NAND GATE:

SYMBOL.:

. [2rv-7D

7400
TRUTH TABLE
A B AB
0 0 1
1 1 1
1 0 1
i i 0

PIN DIAGRAM:
W,
1 Voo 14
2.
| 13
c 12
3 — 7 []
4 1 L
5
0 10
0 T g
E
7L Gnd L5

X-OR GATE :

SYMBOL : PIN DIAGRAM :
_ \J
A Y= AB + AB
B :)I>7 Yoo 14
74860
)
| 13
TRUTH TABLE : ;
C
A B AB + AB] | .
0 0 0
. 4 |—11
0 1 1 j
: 0 : g 0
?] 9
1 1 0 b
B
[l

7+Gnd

Name Symbol Function | Truth Table
A B| X
A] X=A+B 0 o0lo0
AND . — X or c1) (1) 8
B X=AB 1 1 1
A B X
A 0 00
OR j >— X X=A+B 0 111
1 01
B 1 111
AT X
I A >° x| x=~ 110
I~ 15
Buffer | a 1> X X=A 1 |1
A B| X
A 0 1 _1-
NAND >— X X = (AB)’ 1 0] 1
B 1 11 0
A B| X
A 0 0 1
NOR ‘ X x=@a+y| 3 3138
B 1 110
A BJ|] X
A— X=A®B —
JXOR | AT) D—y | X7a" | geT
clusive B x=AB+AB| 1 0] 1
0
A B, X
XNOR | A X=(A®B)l © o[1
Exclusive NOR ’ X or ? EI) 8
or Equivalence| B X=AB’+ AB 1 1 1

UNIT I
COMBINATIONAL LOGIC

« Combinational Circuits —Analysis and Design Procedures

* Binary Adder-Subtractor

« Decimal Adder

 Binary Multiplier

« Magnitude Comparator

« Decoders—Encoders

« Multiplexers

e Introduction to HDL —HDL Models of Combinational circuits.

Introduction:

* When logic gates are connected together to produce a specified output for
certain specified combinations of input variables, with no storage involved, the
resulting circuit is called combinational logic circuit.

* In combinational logic circuit, the output variables are at all times dependent
on the combination of input variables.

* The combinational circuit do not use any memory. The previous state of input
does not have any effect on the present state of the circuit.

« A combinational circuit can have an n number of inputs and m number of
outputs.

A . A

B « B

C « Combinational » CF
CiTcwit

Analysis Procedure

Steps to analyse combinational circuit:

1.

First make sure that the given circuit is combinational circuit and not the
sequential circuit. The combinational circuit has logic gates with no feedback
path or memory elements.

Label all gate outputs that are a function of input variables with arbitrary
symbols and determine the Boolean functions for each gate output.

Label the gates that are a function of input variables and previously labelled
gates and determine the Boolean functions for them.

Repeat the step 3 until the Boolean function for outputs of the circuit are
obtained.

Finally, substituting previously defined Boolean functions, obtain the output
Boolean functions in terms of input variables.

1. Analyze the following logic diagram.

A%.Dk

Gy

DD
| >

)
ool

Solution:

Ty

e I S S

T4

T - | >

Ts
0 [>

T, =4
T, = BC
T, =T, Ts = A.(AD) = A.(A + D) = 4D
T,=T,+BC=A+BC
Ts = (A.D) = (A + D)
F =Ts.T, = (AD).(A + BC) = AD + ABCD
= AD(1+ BC) = AD

G=T,Ts =(A+ BC).(A+ D)
= AA+ AD + ABC + BCD

K-Map for output F:

CD
10

e
U,

il

11

D
AB

14

10

7

15

11

5

DD

13

9

cD CD CD
01

00

O o |0

12

U 0|00

00 =
AB

01
AB

11

AB

AB

CD
10

K-Map for output G:
cCD C
00

cD CD

11

LISEY

il

01

AD

ABC

U,

10

11

DD

5

9

Uipjo 0

00 -

AB

F | G
1

1
0

Ts

Ty

T;

T,
0

Truth Table

AlB|C|D]|T,
0

2. Consider the combinational circuit shown.

1)Derive the Boolean expressions for T; through T,.Evaluate the outputs F;and F,as
a function of the four mnputs.

11)List the truth table with 16 binary combinations of the four mput variables. Then
list the bmnary values for T; through T,and the outputs F;and F, in the table.

111)Plot the output Boolean function obtained in part (11) on maps and show the
simplified Boolean expressions are equivalent to the ones obtained n part (1).

ﬁ‘.—

>
> P>

Truth Table

Dn/.01_01_1_1_1_1_
D“.10111101_0
T..401_01_1_01_0
Tn.,aOOllOOOO
Tn./.00001_1_1_1_
T......OOllOOOO
Nlo|ld|o|ld|o|d|o| d
Qlo|lo|ld|d|o|lo|d]| d
M ololo|Oo|dA| dA| |
J|lo|lo|lo|lo|lo|o|o|o
I

m..

__...l..nC

+ =

A T

O M IQ A
Du|_|nD+

U M T At m
& 1n It € < < 't
S | | R | R N I
= ™
R S S A
Sll.lll

K-Map for output Fy:

D
AB

cCD CD CD

00

01

11

cD
10

00

AB

01

AB

it
‘2]

K-Map for output F;:

D ¢bD ¢cp €D ¢D
AB~ 00 01 11 10

00 —
g
AB 0 |1 3 02

01

el AL

AB (4 - | 6
11 | Q
AB 012 13 !s 14
10

a5 0L VI0

8 9 11 10

Design Procedure

Steps to design the combinational circuit

1.
2.

The problem definition

The determination of number of available input variables and
required output variables.

Assigning letter symbols to input and output variables

The derivation of truth table indicating the relationships between
Input and output variables

Obtain simplified Boolean expression for each output
Obtain the logic diagram

(i) Explain the design procedure of a combinational circuit.
(i1) The inputs to a circuit are the 4 bits of the binary number D;D,D,D,.The circuit produces a 1 if and only if

all of the following conditions hold
eqs) o Inputs Output
1)MSB 1s ‘1’or any of the other bits are a ‘0
: . o D, D, D, D, Y
2) D, is a 1 or any of the other bits are a ‘0. 0 0 0 0 .
3)Any of the 4 bits are 0 5 5 0 . .
Obtain a minimal expression for the output
0 0 1 0 1
DO, DB, Db, DD, DD, TN N B S A -
D; D3 00 01 11 10 0 1 0 0 1
00 0 1 0 1 1
D, D, 0| 1 3 | 2 0 1 1 0 1
01 0 1 1 1 0
D;D, 4 5 7 6 1 0 0 0 1
1o 1 0 0 1 1
D,D,
12| 13 15 14 1 0 1 0 1
10 1 0 1 1 0
D,D, sl ol 1 | 10 1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 TrutiiTable 1 0

A majority gate is a digital circuit whose output is equal to 1 if the majority of inputs
are 1’s. The output is 0 otherwise. Using a truth table, find the Boolean function
Implemented by a 3-input majority gate. Simplify the function and implement with
gates.

Solution:
Step 1:Derive the truth table Step 2: Obtain the simplified Boolean expression

A|lB|C]|Y BC 00 01 11 10
olololo A\Ef BC BC BC
010 110 0A 0 1 3 2
0|l 1]01]0

1A 4 5 7 6
0| 1]1]21
110!l 0l 0 Step 3: Draw the logic diagram
11011
11101
111|111

Binary Adder Subtractor

Adders:
* The most basic operation, is the addition of two binary digits.
* The simple addition consists of four possible elementary operations, namely,
0+0=0
0+1=1
1+0=1
1+1= 102

* The first three operations produce a sum whose length is one digit, but when the
last operation is performed sum is two digits. The higher significant bit of this
result is called a carry, and lower significant bit is called sum.

 The logic circuit which performs this operation is called a half-adder.
 The circuit which performs addition of three bits is called a full-adder.

11. Design a half adder and full adder.
Two binary inputs: augend and addend bits

Two binary outputs: sum and carry

Inputs Outputs
A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth Table for half adder

K-map simplification:

Carry
B _
A OB 1B
0A 0 0
1A [0 |@D
Carry=AB

1) Jo

Sum=AB +AB
=A® B

A — L + Sum s

Half adder

B — - Camy

Block schematic of half adder

Logic diagram:

Full Adder

« A full adder is a combinational circuit that forms the arithmetic sum of three input
bits.

« It consist of three inputs and two outputs.

« Two of the input variables, denoted by A and B, represent the two significant bits
to be added. The third input C,;, represents the carry from the previous lower
significant position.

Cin
A ————
; Full adder » Sum
————
Cout Block Schematic of

full adder

K-map simplification for carry and sum
K-map for Carry (C,,;)

Truth table of full adder BC;, 00 01 11 10
A B C,, BC, BCi, BC,
Inputs Outputs \
Carry 0A 0 ,/10 4 1\3 o , Cout = AB + ACy;, + BCy,,
A B Ci, (C.) Sum D
out 0 1 1
0 0 0 0 0 G
K-map for Sum
0 0 1 0 1
0 1 0 0 1 ABCin EOC_ ‘llc ;lc 1%_
B C. BC. i BC;

0 1 1 1 0 \ in in in
= 0 0 0 L 04 |0y @1 0, @ 2 | Sum = ABC;, + ABC;,+ ABCy, + ABC,,
1 0 1 1 0 - () —
1 1 0 1 0 (D 4]0 5|(W)q]0
1 1 1 1 1

Implementation using logic gates:

m »
O >
3

gO
§

Som
;EESB)

Sum = ABC;,, + ABC;,+ ABC;,, + ABC;,
= C;n(AB + AB) + C;,,(AB+ AB)
= Cin(AOB) + C;,,(ADB)
= Cin(A®B) + C;,(ADB)
Sum = C;,, D(ADB)

Sum

Full adder using two half adders:

Cout = AB + AC;, + BC;,,
= AB + AC;,(B+ B) + BC;,(A + A)
= AB + (ABC;, + ABC;,)) + (ABC;,, + ABC;,)
= AB(1+ Cy, + Cy,) + ABCy, + ABCyy,
= AB + ABC;,, + ABC;,
= AB + C;,(AB + AB)

Cour =AB + Ci,,(A®B)
Sum = C;, O(ADB)

First half-adder Second half-adder -

Subtractors:

» The subtraction consists of four possible elementary operations, namely,
0-0=0
0-1=1 with 1 borrow
1-0=1
1-1=0

® |n all operations, each subtrahend bit is subtracted from the minuend bit.

® |n case of second operation the minuend bit is smaller than the subtrahend bit, hence 1 is
borrowed.

Half Subtractor:

A half-subtractor is a combinational circuit that subtracts two bits and produces their
difference.

It also has an output to specify if a 1 has been borrowed.

Inputs Outputs Limitations:

A B Difference Borrow In multidigit subtraction, we have to add two bits

0 0 0 0 along with the borrow of previous digit subtraction.
Effectively such subtraction requires subtraction of

0 1 1 1 three bits. This is not possible with half subtractor.

1 0 1 0

1 1 0 0

Truth Table for half subtractor

K-map simplification: Logic diagram:
Difference

Borrow

B _
AN OB 1B

04
1A

0o |2
0 0
Borrow=4B

)D Differer s

B A
;\\()E 1B 8 ﬂT

O

04 |O

1A |@)

0

s Bt

Difference=AB +AB

=A®B

Full Subtractor

A half-subtractor is a combinational circuit that performs a subtraction between two bits taking into

account of the lower significant stage.

« This circuit has three inputs: A,B and B,, > minuend,subtrahend and previous borrow and two

outputs=>D and B,

Inputs Outputs
A B Bi, D | By,
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Truth table of full subtractor

K-map simplification for Difference,D:
BB,, 00 01 11 10

A\EEEBm BB, BK
0A 0, @1 03 @2
1A @4 05 @7 06

K-map simplification for B :

D = EEBin + ﬁBBin-i. AEBin + ABBin

BB,, 00 01 11 10
A\ B By, EBin BBin BB,
04 0 0<_1__1,@D

1A |0, 0, \1/7 0,

B,y = AB + AB;, + BB;,

Implementation using logic gates:

i

’ww> 5(Dltnl)
00

Difference,D = ABB;, + ABB;,+ ABB;,, + ABB;,
= B;,,(AB + AB) + B;,,(AB+ AB)
= Bin(AOB) + B;,,(A®B)
= Bin(A®B) + B, (A®B)
D = B;,®(A®B)

P | T _
— L~
Bin
T L
A
G-
B |

out

Full Subtractor using two half subtractor:

B,, = AB + AB;, + BB;,
= AB + AB;,(B+ B) + BB;,,(A + 4)
= AB + ABB,;,, + ABB;, + ABB;,, + ABB,,
= AB(1 + B;,, + B;,) + ABB;,, + ABB,,

= AB + ABB;,, + ABB,,

First half-subtractor

= AB + B;,(AB + AB)
B,, =AB+ B;,,(A®B) A —
D = B;,,®(A®B) B

[N

Second half-subtractor

L/

—+—
|
>

[—

@ (A
Difference
./

By

Yl
3|

a8 [

)
Bout

Parallel Adder:

 In order to add binary numbers with more than one bit, additional full adders must be
employed.

* A n-bit parallel adder can be constructed using number of full adder circuits connected in
parallel.

* The n-bit parallel adder is built using number of full adder circuits connected in cascade,
l.e., the carry output of each adder Is connected to the carry input of the next higher-order
adder.

* It should be noted that either a half-adder can be used for the least significant position or the
carry input of a full-adder is made 0 because there is no carry into the least significant bit
position.

Design a 4-bit parallel adder using full-adders.

B3 s By A B, A, By A

Here, for least significant position, carry input of full adder is made O.

Parallel Subtractor

The subtraction of binary numbers can be done most conveniently by means of complements.
The subtraction A-B can be done by taking the 2°s complement of B and adding it to A.

The 2’s complement can be obtained by taking the 1’s complement and adding one to the least
significant pair of bits.

The 1’s complement can be implemented with inverters and a one can be added to the sum through
the Input carry.

Parallel Adder/Subtractor:
 The operations of both addition and subtraction can be performed by a one common binary adder.
« Such binary circuit can be designed by adding an Ex-OR gate with each full adder.

« The mode input control line M is connected with carry input of the least significant bit of the full
adder.

 This control line decides the type of operation, whether addition or subtraction.

Ba B2 Fl Bo

TSl 91 91

Cout Ful |S= S| Fun Cin Coue] gy |Cin Coue| Fun
%] Adder Adder Adder Adder

I ! ! I

a3 he o 81 =0

M

« When M= 1, the circuit is a subtractor and when M=0, the circuit becomes adder.
» The Ex-OR gate consists of two inputs to which one is connected to the B and other to input M.
 When M =0, B Ex-OR of 0 produce B.

e Then full adders add the B with A with carry input zero and hence an addition operation Is
performed.

« When M =1, B Ex-OR of 1 produce B complement and also carry input is 1.

» Hence the complemented B inputs are added to A and 1 is added through the input carry, nothing
but a 2°s complement operation.

 Therefore, the subtraction operation is performed.

« The parallel adder is ripple carry adder in which the carry output of each full-adder stage
IS connected to the carry input of the next higher order stage. Therefore, the sum and
carry outputs of any stage cannot be produced until the input carry occurs; this leads to a
time delay in the addition process. This delay is known as carry-propagation delay.

» The method of speeding up the process of parallel adder by eliminating inter stage carry delay is
called look ahead-carry addition. This method utilizes logic gates to look at the lower-order bits
of the augend and addend to see if a higher-order carry is to be generated.

Look-Ahead Carry adder

* It uses two functions : carry generate and carry propagate
P.=A.,®B; A,
G;= AB; B,

* The output sum and carry can be expressed as,

S;=P; & C,
Cin=G; + P; G ©

* G, Is called a carry generate and it produces on carry when both A; and B; are one, regardless

of the input carry.

* P is called a carry propagate because it is the term associated with the propagation of the
carry from C; to C,

« Now the Boolean function for the carry
output of each stage can be written as
follows. C,,,=G; + P, C

C,=G,+P, G4
C3=G, + P, C,
=G, +P, (G, +P; C))
=G, + P, G; + PP, Cy
C,=G; + P53 G5
=G; + P3 (G; + P; Gy # P3P; Cy)
=G + P3G, + P3P, Gy + P3PoP; €y

From the above Boolean function it can be
seen that C, does not have to wait for C; and
C,to propagate; in fact C, Is propagated at
the same time as C, and C,

F'3 -
G3—
—

(====1Dg
PE B T_ :
Gi i

[‘_.
P, :
G, s

—

Y

-

£

T

]

kr

p——

N

>

m

>

gt

17V T

N

[—

A

-t

S
Gy E :‘6 l Vee
. -5‘ [Z 15 Fz
G ki i, 8 %[5 [2]s,
4 Cq 5 Ic

7.2 74182 13]cC
o] jook ahead "
e carry c
Fs - Gs E generator 12 | ©nex
P3 v S -‘-;3 G 11 Cn'y
G3 L C I 3 - i
00k 3 P
7 101G
ahead BEA '
carry ohD[8 9 | Chez

P, generator

P2 ‘ (a) Pin diagram
G, ———)J} %

(b) Logic symbol

Serial Adder

 \We can add numbers stored in the right shift registers A
and B, serially.

The full-adder is used to perform bit by bit addition and
D-flipflop is used to store the carry output generated
after addition.

This carry is used as carry input for the next addition.

Initially, the D-flipflop is cleared and addition starts
with the least significant bits of both register.

After each clock pulse data within the right shift
registers are shifted right 1-bit and we get bits from
next digit and carry of previous addition as new inputs
for the full adder.

The result SUM is stored bit by bit in the register A.

We can implement serial subtractor by replacing full
subtractor instead of full adder and thereby we get
difference and borrow instead of sum and carry.

Clock

——
SUM
Right shif & [
ister A 8
reg Ch adder -Cﬂ
Q. .
Right shift CLK
register B
-

Comparison between serial and parallel adder

Serial adder

Parallel adder

 Uses shift register

Uses registers with parallel load capacity

* Requires only one full adder circuit

Number of full adder circuit equal to the
number of bits in the binary number

* Itis asequential circuit

Purely a combinational circuit

« Time required depends on number
of bits

Time required does not depend on
number of bits

e |tis slower

It Is faster

BCD Adder

« A BCD adder is a circuit that adds two BCD digits
and produces a sum digit also in BCD.

* To implement BCD adder we require:
» 4-bit binary adder for initial addition
» Logic circuit to detect sum greater than 9
» One more 4-bit adder to add 0110, in the sum if the sum is
greater than 9 or carry is 1
» The logic circuit to detect sum greater than 9 can be
simplified by Boolean expression of given truth table.

 Y=1 indicates sum is greater than 9.

» We can put one more term, C_ In the above expression to
check whether carry is one.

« [f any one condition is satisfied we add 6(0110) in the sum.

Inputs Outputs
S, S, S, S, Y
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Truth Table

K-map Simplification Block diagram of BCD adder

o S_1§ S_ISO S1Sg Sl§ o
sé% oo o1 11 10 Bf 512 :11 Blo Als llz l1 l0

00 7
01 Cout 4-bit binary adder Pl
S, S
— 0 0 0 0 Combinational S3 82515
o 4 > ! 6 circuit \
11 / ' P “ :
S35, ul 1 17\ B Output Ve ; -
e TRy T bt i U+ ’_ﬂ
10 N e
S.S, \} / . V¢ 1 % y
> 1040y 111 10
Cout <+ 4-bit binary adder —1.6,=0
Y = S3SZ + 5351 (lgnoregu) ' L in
S3 S, S¢Sy

« The two BCD numbers, together with input carry, are first added in the top 4-bit binary adder to produce a binary
sum.

* When the output carry is equal to zero (i.e., when sum <9 and C_; =0) nothing (zero) is added to the binary sum.

« When the output carry is equal to one (i.e., when sum > 9 and C_, =1) binary 0110 is added to the binary sum through
the bottom 4-bit binary adder.

« The output carry generated from the bottom binary adder can be ignored, since it supplies information already
available at the output-carry terminal.

Design an 8-bit BCD adder using 4-bit binary adder.

4-bit binary adder
(IC741LS283)

S38;8:Sg

|

| |

Bo

by

Ay Ay Ay Aqg

C

out

4-bit binary adder
(IC74L5283)

fﬁo

e

Cin -
Lot

"~ ‘
Cout 4-bit binary adder
— (IC74L.S283)
‘ (Ignored) S5 S, 1S,
Digit 2 ERX
—

Digit 1

SHE

| SN

'y

0 T * *
0 C 4-bit binary adder C
ol (IC74LS283) .
(Ignored) 33 Sz S, SO
S
Digit 0

o>

BCD Subtractor

Subtractor using 9’s Complement method:

* The steps for 9’s complement BCD subtraction 1s as follows:

* Find the 9’s complement of the negative number =2 it IS done by inverting each bit of BCD
number and adding 10(1010) to it.

 Add two numbers using BCD addition

* If carry is generated add carry to the result otherwise find the 9°s complement of the result.

ey,

BCD input (operand 2) B ~h
ﬁ p— ~
B, B, B, B,
— > o :1—3—0 +5V
[mraams Ex-OR gates
act as inverters
9's
1 OT 1 o] -— Inverted BCD
Com
‘L Az Ay Ay A; By B, By By c _'89“' 8 } CraDlemeny
Cout in ™
P — 4-bit adder
ignored _I
8, 8.8,8; - ?
IC7483
BCD input
(operand 1) A ~=— 9's complement of
| | l | BCD input B
Ay Az Ay A By B2 By B BT
Cou in— \
4-bit adder ﬁ-
S3 S; S S £
IC7483
3 ’ BCD
Adder
circuit
] 1
= |As A2 AT Ay By B, B B,
C,=0
Carry Cowt =] 4-bit adder ‘)
Ignored 8,8.8,8; 1
I IC7483
—=—— Sum of A and
9's complement of B
[1 1 ; ; Wearry =1
F A A BB B Clrault adde
Cout =— 4-bit adder - > Hcarry =0
ignored circuit finds the
S3; S, S; S, 9's compiement
l ﬂ 1 IC7483 of the result
 J
Sign BCD output (magnitude) }

Subtractor using 10’s Complement method:

The steps for 10°s complement BCD subtraction is as follows:

* Find the 10’s complement of the negative number =2 (9’s
complement+1)

« Add two numbers using BCD addition

* If carry 1s not generated find the 10’s complement of the result.

BCD input (operand 2) B

Ex-OR gates -
act as invertors
" | red BCD 10's
l i1 o0y 110} “:"""'8 complement
v [As A; A A deoo circukt
C I
Igm:d 4-bit adder Cin=1
S, 8,85
| IC7483
BCD input
(operand 1) A «— 10's complement of
T 1 1 BCD input B
AR BB BB
cw in
] 4.-bit adder ‘—‘J_
S35,8:S, ™
IC7483
BCD
Adder
circuit
=] Lt
= A3 Az A1 AO B3 82 81 BQ
Cout ' ' Cin=0
4{ i 4-bit addor‘ -—l in)

| [C7483

' Sum of Aand 10's
~—— complement of B

tieretes \
= YYW —
. A, A B. B, B, B circuit finds
. Ay Az Ay Ay By By By By ¢, 10's complement
out ____| 4-bit adder s of the result
Ignored if carry =1
S3 S, S, S circuit per;orms
1 l 1 1 1C7483 grvs
Sign BCD output (magnitude) J

Binary Multiplier:

The multiplication process for binary numbers is similar to the decimal numbers.

L]

L]

Actually binary multiplication is simple than decimal multiplication since it involves only 1s and Os.

L]

Rules for binary multiplication:

* 0%0=0

* 0*1=0

* 1*%0=0

e 1*1=1
The combinational logic circuit implemented to perform such multiplication is called combinational multiplier
or array multiplier.

2 x 2 Multiplier:
Two unsigned 2-bit numbers: Multiplicand,A= A, Ay and multiplier B= B; B,

L]

The multiplication process involves multiplication(product) of 2-bit number and addition of 2-bit
number.

The multiplication of 2-bits can be implemented using 2-input AND gate whereas addition of 2-bits
can be implemented using half-adder.

Multiplication Process

Py=ByA,

2 x 2 bit combinational array multiplier
By A BI‘ Ao BoAy Bya

Half-adder
Py P2 Py Po

4 x 4 multiplier:

By ——

By -

e Ej T1T
¥ ? ?
? Xz Xy Ky

4-bit bln-rr adder
Cow 83 8, S, S,
r r 1
23 xz x1 Iﬂ
4-bit binary adder
Cot S3 8, s,
X2 X4 Xg
S; s,
Ps Py Py P P

Design a multiple circuit to multiply the following binary number A=AA A,
and B=B,B,B,B,

A
0
; |
Y, Y, Yq X2 X Xg

Y, X3
0 Cin 4-bit binary adder
Cor S3 S22 Sy So
o |
2 Bj ! B, | By | Bo
Y3 Y2 Yy Yo Xy Xz Xy Xg
0o Cin 4-bit binary adder
Cout Sy S, _S1 So

Magnitude comparator

« A comparator is a special combinational circuit designed primarily to compare the
relative magnitude of two binary numbers.

* The n-bit comparator receives two n-bit numbers A and B as Inputs and outputs are
A>B, A=B and A<B.

« Depending upon the relative magnitudes of the two number, one of the outputs will be
high. :

Inputs

g U

[1 mi 1]

A>B A=B A<B
~— -

—

Outputs

Design a 1-bit comparator using basic gates. Vs
Solution:

>
ﬁ
"™
O+
o

> x|

1
04 |0 |O
0

Design 2-bit comparator using gates.

Truth table:

Inputs Outputs
A4 A B4 B, A>B A=B A<B
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

K-map Simplification:

Bo
Al AO
00
AL A,
01
ALA,
11
AlAO

10
AsAy

01

B,B, BB, BB

00 11

BB,
10

12

13

15

14

11

10

A<B

e

_B..thIF 4 i
= : e
ol Rt I N
el Lt —

E 4-bit Magnitude Comparator

2

Ba

As-;%

SN

=

U

B,

Aq

B4

b

U U

(A<B)

eﬁx j_" '

\/

>__ (A>B)

JU Uy

(A=B)

Code Conversion

Design a 4-bit binary to BCD converter.
Step 1: Truth Table for the code converter

Step 2: K-map simplification for each BCD output

Dy=By

D, = B3B;B, + B3 B,
D, = B3B; + B; By
Ds; = B3B, B,
Dy,=B3B,+ B3B4

Binary code BCD code
B; |B; |By [Bg |Dy |D3 |Dz Dy | Dy
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 1 1
0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0 1
0 1 1 0 0 0 1 1 0
0 1 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0 1
1 1 0 0 1 0 0 1 0
1 1 0 1 1 0 0 1 1
1 1 1 0 1 0 1 0 0
1 1 1 1 1 0 1 0 1

Design a logic circuit to convert BCD to gray code.

Step 1: Truth Table for the code converter

Step 2: K-map simplification for each Gray output

G[):D]@Do
Gl = D2$D1
GE=D3 + D3
G3=D3

Logic diagram:

BCD code
D, D, Dy Dy
F ™
+- D
— L~
¢ S
! =

BCD code Gray code
D; |D, |D, |D, |Gs |G, |G, |Gy
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1

1. Design a logic circuit to convert the 8421 BCD to Excess-3 code.
2. Design and implement a 8421 to gray code converter. Realize using NAND gates only.
3. Design a gray to BCD code converter.

Decoders

« A decoder is a multiple-input, multiple-output logic circuit which converts coded
Inputs into coded outputs, where the input and output codes are different.

* The encoded information is presented as n inputs producing 2" possible outputs.

* The 2" output values are from 0 to 2"-1.

 Usually, a decoder is provided with enable inputs to activate decoded output based
on data inputs. When any one enable input is unasserted, all outputs of decoder are

disabled.

n-data
inputs

Enable
inputs

Binary Decoder

A decoder which has an n-bit binary input code and a one activated output out of
2" output code Is called binary decoder.

A binary decoder is used when it Is necessary to activate exactly one of 2" outputs
based on an n-bit input value.

A B
Inputs Outputs L} %_
A B
EN | A B) Y, | Yy | Y, A -
0=
o | x [x| o] o] o] o il
1 0 0 0 0 0 1 L v =K8
1| ol 1] 0] o0 | 1] o0 -
1 1 0 0 1 0 0 f(f &—— v,=AB
1 1 1 1 0 0 0
Truth Table for a 2 to 4 decoder #— Y,=AB

Enable (EN)

* 2 mputs are decoded into four outputs, each output representing one of the minterms of the 2
input variables.

* The two inverters provide the complement of the inputs, and each one of four AND gates
generates one of the minterms.

 If enable input 1s 1(EN=1), one, and only one, of the outputs Y, to Y3, is active for a given
input.

* The output Y}, is active, 1.e. Yo=1 when inputs A=B=0, the output Y;1is active when inputs A=0
and B=1.

* Ifenable input is 0, i.e. EN=0, then all the outputs are 0.

Draw the circuit for 3 to 8 decoder and explain.

* In this, 3 inputs are decoded into eight outputs, each output represent a B c
one of the minterms of the 3 input variables.

« The three inverters provide the complement of the inputs, and each
one of the eight AND gates generates one of the minterms.

« Enable input is provided to activate decoded output based on data A ?ﬁ c
inputs A,B and C. I }—v,-x8T
r | —,=RBc
Inputs Outputs
EN| A | B | C | Y, |¥Yg |V | ¥y [¥3 |V, | ¥, |V, Y,=KBT
o | X | X | X |o]|]o0o]|]o0o|oOoO] O] O0O]|O0]oO
1t olololololololo]o] o] hasAe
1] 0|0 1|/ o0lO0}|O0O]|]O0O|O|] O] 1]|0O Y,=ABC
10| 1|0]o0 |0 | O0] 0|0 1| 0|0
1 ol 1] 1]loflolo|lolz2]o]o]o L K
1 1|/ o0|lo0o|lO]O]O|1]o0| O] O]oO Yg=ABC
1 1] 0 1|1 0] o0 | 1|0} O0]|oO0] 0|0
1110|021]o0o]oO0|O0|O0]oO0]oO 3 Yy =ARG
1 1 1 1 1|10 o0o|O0O]oO0O|O0]|]O]oO Enable (EN)

Expanding Cascading Decoders
Binary decoder circuits can be connected together to form a larger decoder circuit.

The figure shows 4x16 decoder using two 3x8 decoder.

Here, one input line (D) is used to enable /disable the decoders.

When D=0, the top decoder is enabled and the other is disabled.

Thus the bottom decoder outputs are all 1s and the top eight outputs generate minterms 0000 to 0111.

When D=1, the enable conditions are reversed and thus bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all 1s.

. TALS13IB1)
Design 5-to-32 decoder N -~— A op—e
using one 2-to-4 and s "o c Yap—,

Ya ‘r:

four 3-to-8 decoder _ |
ICs. ' ’é}“ E ve
Gse T Yy

{ FALS138(2)

&_ F Yol Ys

L o]
L_ c Yap—— Yo
R ¥ af— Yy
Y. Y2

% Gy ¥s Vi
Gom - by e
qih ¥r Yas

TALS138(3)
. Vg

‘_
O
"-i{{-ﬂ-t;::g-..‘
!
i

Tl 81388)

"1"*-{.“1*
%
]

At
S
hﬂliu L L..uu.l.h

* Implement the following multiple output combinational logic using a 4 line to 16 line decoder.

Y, = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
Y, = ABCD + ABCD + ABCD + ABCD
Y3 =ABCD + ABCD + ABCD

OO ®>»

* Implement the following multiple output combinational logic function using a 4 line to
16 line decoder.

f1=2m(1,2,4,7,8,11,12,13) ;f, = Xm(2,3,9,11);f; = Zm(10,12,13,14)
f4 = Em(2,4, 8)

—N
11
Co®m>
eyl R
|

Design and implement a full adder circuit using a 3:8 decoder.

Solution:

Truth table of full adder

Inputs Outputs
Carr
A | B |C, (COUS’ Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Carry

Sum

Applications of Decoders:

« Code converters

 Implementation of combinational circuits
« Address decoding

« BCD to 7-segment decoder

Decoder ICs:

3:8 Decoder — 74138

Dual 2:4 Decoder — 74139

BCD to decimal decoder — 7442
BCD to 7-segment decoder — 7447

Encoders

* An encoders 1s a digital circuit that performs the inverse operation of a decoder.

* An encoder has 2™ (or fewer) input lines and n output lines.

* In encoder the output lines generate the binary code corresponding to the mput
value.

Decimal to BCD Encoder .
* The decimal to BCD encoder, usually 74XX147

has ten input lines and four output lines. (11) I'1 K
* The decoded decimal data acts as an (_ﬂg)ﬁz
Input for encoder and encoded BCD 13)] .. 5
output Is available on the four output "(‘1')'?;3 . A
lines. | da >
. N D.ec'ma'< @45 =
* In IC 74XX147, it has nine input lines inputs D
and four output lines, | -@-djiﬁ |
« Both the Input and output lines are ﬂ‘-éiﬁ?*
asserted active low. -@-cjs ’
* It Is important to note that there is no \ 99 .

input line for decimal zero, when this
condition occurs, all output lines are 1.

;M N |©

}BCD outputs

. A .
H

Truth Table for Decimal to BCD encoder

Outputs

Inputs

Decimal

Value

X denotes don’t care condition

Priority Encoder

A priority encoder 1s an encoder circuit that includes the
priority function.

Inputs Outputs
Do |Dy|D,|D3|Yy]|Yp

In priority encoder, if two or more inputs are equal to 1 at the
same time, the input having the highest priority will take
precedence.

D5 input with highest priority and Dy input with lowest priority.
When D5 input i1s high, regardless of other inputs output is

The D, has the next priority. Thus, when D3;=0 and D, = 1,
regardless of other two lower priority mput, output 1s 10.

VvV
0
1
1
1
1

R |lo|lo|lo|o
R, |lO|O | X

0 X
0 0
1 1
X 0
X 1

X|X|X|+r|o©

Truth table of 4-bit priority encoder

The output for D; 1s generated only if higher priority inputs are
0 and so on.

The output V (a valid output indicator) indicates, one or more
of the mnputs are equal to 1. If all inputs are 0, V 1s equal to 0,
and the other two outputs (¥; and Yj) of the circuit are not used.

By K-map Simplification:

For Y,
D:Ds 90 01 m 10
DODl
/
00 () M

- 012 113 1 15 114

10
05 |l1g[\1h 1/10

-
Y,=D,+D;
Y,=D;+D, D,

V = Dy+ D, +D, +D,

For Y,
D2D3
moo 01 11 10
00 AT
Xo L] 1510,
- (14 1l 1,10,
H Llw 1Jl 115|044
10
04|l1 1;.1 04
D3D, D, D,
¢ | . :>_Yo
#’t ‘_->_ Y,
-_
n - v

11

10

ForV
00 01 11 10
Y T
O |1 4(f14 |15
)
@12 1311 45 1)&3
Ll g [\1o |1) 1/ng

Octal to Binary Encoder

* It has eight inputs, one for each octal digit, and three outputs that generate the corresponding binary
code.

* In encoders it is assumed that only one input has a value of 1 at any given time; otherwise the circuit
IS meaningless.

 The circuit has one more ambiguity that when all inputs are Os the outputs are 0s. The zero output
can also be generated when D,=1. this ambiguity can be resolved by providing an additional output

that specifies the valid condition. """, 0y O Oy Dy 0y Oy D,
Inputs Outputs
Do | Dy | D, | D3 | Dy | Ds | Dg | D | A B C |/ A=Dy+ D5+ Dy *D;
1 0 0 0 0 0 0 0 0 0 0
o |1 |o |o |o |o |o |o |o |o |1 B=D, +Dy + Dy *D;
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1 # > C= D+ Dy + D 40y
0 0 0 0 1 0 0 0 1 0 0 | \
0 0 0 0 0 1 0 0 1 0 1
o o Jo Jo [o o [z [o [r [z [o Encoder ICs:
74147-Decimal to BCD encoder
0 0 0 0 0 0 0 1 1 1 1 74148-8-input priority encoder

Multiplexers

In digital systems, many times it 1s necessary to select
single data line from several data-input lines, and the data
from the selected data line should be available on the

output. (
Dije—sd
This digital circuit which does this task is called a Do
multiplexer. =
: .. : i D, —
It is a digital switch. a-wial S o o
C : | Muitip 19
It allows digital information from several sources to be . Multiplexer
routed onto a single output line. | O
The basic multiplexer has several data-input lines and a Enable —» - Dy
single output line. , g S . f r
The selection of a particular input line i1s controlled by a S 8§ S S §
set of selection lines. . Sem\/mpm

Since multiplexer selects one of the input and routes it to
output, 1t 1s also known as data selector.

Normally, there are 2™ input lines and n selection lines
whose bit combinations determine which input is selected.

Therefore, multiplexer 1s ‘many into one’ and it provides
the digital equivalent of an analog selector switch.

2:1 Multiplexer:

R=EDs

Enable input is applied to both gates as one input.
Selection line S is connected as second input to second AND gate.
An inverted S is applied as second input to first AND gate.

Outputs of both AND gates are applied as inputs to OR gate.

Y = E§DO + ESD1

(a) Logic diagram

,:/ 7 /"'2 0
'1
X
(b) Function table

D, is applied as an input to one AND gate and D, is applied as an input to another AND gate.

Select input
(c) Logic symbol

Working:
« When E=0,output is 0,1.e.,Y=0 Irrespective of any input condition.
« When E=1, the circuit works as follows:

a. When S=0, the inverted S, that is gate 1 gets applied as second input to first AND gate. Since S is
applied directly as input to second AND gate, its output goes zero irrespective of first input. Since
the second input of first AND gate is 1, its output is equal to its first input, that is D,. Hence Y= D,

b. Exactly opposite is the case when S=1. In this case, second AND gate output Is equal to its first
Input D, and first AND gate output is 0.Hence Y= D,.

Enable | Select D D Output
(E) (S) ' ° Y
1 0 X 0 0
1 0 X 1 1 ESD, _
1 1 0 X 0
1 1 1 X 1 ESD,
0 X X X 0

Truth Table for 2:1 multiplexer

4:1 Multiplexer:

Do)__
] > v=E5,5,0,+
D, ES,SgDy+
_)-_J ES, §20;+
ES;1SDs
D3)
Alal
s, S E E S; | S | Y
1 0 0 D,
1 0 1 D,
1 1 0 D,
1 1 1 D,
0 X X 0

Function Table

emmenccmee

Inputs

Enable
input

Select inputs

8:1 Multiplexer:

=
ozi{:+
o

!
ot}
ot
e (PR

AGaARAR
Y

— Qutput

S, S, Sy Y
0 0 0 D,
0 0 1 D,
0 1 0 D,
0 1 1 D,
1 0 0 D,
1 0 1 D:
1 1 0 Dg
1 1 1 D,
(b) Function Table :: (1)
— 2
8x1
—»1 4
— s mux
— 6
e A ,
Enable —={ EN S, S¢ S
g T 17
\.,V—/
Select
inputs

(c) Logic symbol

Quadruple 2 to 1 Multiplexer

 In some cases, two or more multiplexers are enclosed within one IC package.

» The figure shows quadruple 2-to-1 line multiplexer, i.e., four multiplexers, each capable of
selecting one of two input lines.

&

Function Table

Yo

E S Output Y M ¥
1 X All Os A Y,
0 1 Select A r

Ay r Y
0 0 Select B

By

B,

L A o

I“Wylwwt

Expanding Multiplexers

It Is possible to expand range of inputs for
multiplexer beyond the available range by
Interconnecting several multiplexers in cascade.

 The circuit with two or more multiplexers
connected to obtain the multiplexer with more
number of inputs is known as multiplexer tree.

Design 16:1 multiplexer using 8:1 multiplexer.

Design 16:1 multiplexer using 4:1 multiplexers.

Implementation of combinational logic using MUX
1. Implement the given function using 8:1 multiplexer. F(A,B,C)=Xm(1,3,5,6)
Solution:

Step 1: Select the multiplexer. Here, Boolean expression has 3 variables, thus we require 2% = 8:1
multiplexer.

Step 2: Connect inputs corresponds to the present minterms to logic 1. Logic1

Step 3: Connect remaining inputs to logic 0. | f S
Step 4: Connect input variables to select lines of MUX. + ‘: i
H.
+— ¢
‘_, 8:1 — F
4 MUX
+7 /5 ' - 5 %
6, S
?_: -8 84 5 |
= |

2. Implement the following Boolean function using 8:1 multiplexer
KA,B,C,D)=ABD + ACD + BCD + ACD

Solution:
Step 1:Express the Boolean function in the minterm form.
F(A,B,C,D)=Xm(1,3,4,5,6,11,15)

Step 2: Implement it using implementation table.

D, | b, | D, | D, | D, | D | Dy | D,
a |l o || 2 | @@ |6 |7
A 8 9 10 | @ | 12 | 13 | 14 | G5

0 A 0 1 A A A A

B C D

Multiplexer Implementation

3. Implement the following Boolean function with 8:1 multiplexer.

F(A,B,C,D)=n2M(0,3,5,6,8,9,10,12,14)
Solution: Here, instead of minterms, maxterms are specified. Thus, we have to circle the maxterms
which are not included in the Boolean function.

D, | b, | D, | b, | D, | D. | Dy | D,
A 0 D | @ | 3 | @] s 6 | @ Dy
Al 8 | 9 | 10| @] 12| @G| u|d D,
0 a A A A A 0 1 D,
Dy §:1
o, M
Ds
Dg
LD7 S; $1 S

4. Implement the following Boolean function with 8:1 multiplexer.
F(A,B,C,D)=xm(0,2,6,10,11,12,13)+d(3,8,14)

Solution:

In the given Boolean function three don’t care conditions are also specified. We know that don’t care
conditions can be treated as either Os or 1s. Here, don’t cares are treated as 1.

A 1
—
A D,
—
D, D, D, D, D, Ds Dg D, | D; g:-1
a || 1 | @@ 4] 5 | 6| 7 - D, Mux
Al B | 9 0| 4D | @ | A3 | @ | 15 Ds -
1 0 1 1 A A 1 0 F gs
"8, 8, s,
. |

5. Implement full adder circuit using 8:1 multiplexer.

Inputs Outputs
Carr
A | B |C, (COUS’ Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Logic 1

 —Carry

<
-
<

NO A WN 2O
=
c
»

Sz $4 Sp-

AB Cin

Logic 1

NOO oS WON-2O

S ®
:n-
> =

<

S, S; Sp

—Sum

R
A B C,

6. Implement full adder circuit using quadruple 2 to 1 multiplexer.

Solution: Inputs Outputs
Implementation Table Al B |c, %grf)y sum
Sum: 0 0 0 0 0 Implementation
D, | D, | D, | D, o0 |1] 0 1)
il o Do) 3 0| 1]|0] o0 1 . 13?
@ |5 |6 (7 T R S0 ;b
A L4 1 0 0 0 1 Logic 1 110s 1y |~ Camy
A A A A 1 0 1 1 0 —120p" quadruple | o
Carry: 1 [1o 1 | o T e ik
1 | 1|1 1 1 20,
Do | Dy | Dy | Dg YEN
Alo|1]|2]0® 'FZEN A IB 2
A 4 ® @ @ = é Cin
0 A A 1

7. Realize F(w,x,y,2)=%2(1,4,6,7,8,9,10,11,15) using 4 tol MUX.

Solution:

Dl 2 D3

1| 2

D
3
5 | 6|

:@ :;@ oM

9 |10 | ad

12

13 | 14 | 15

Dy=wx+wx
=wOx
D,=wXx+wx
=X
D,=wx+wx
=wOx
D;=wx+wXx + wx
=wW+X

. D, MUX
— >—%_
|
y y 4

Applications of Multiplexer:

* They are used as a data selector to select one out of many data inputs.
* They can be used to implement combinational logic circuit.
* They are used in time multiplexing systems.

» They are used in frequency multiplexing systems.

* They are used in A/D and D/A converter.

* They are used in data acquisition systems.

Multiplexer ICs:

74150->16:1 multiplexer

74151->8:1 multiplexer

74153->Dual 4:1 multiplexer

74157->Quad 2-input multiplexer

Demultiplexers

* A demultiplexer 1s a circuit that receives information on a single line and transmits this
information on one of 2™ possible output lines.

* The selection of specific output line is controlled by the values of n selection lines.

* [t has one input data line, 2™ output lines, n select lines and one enable input.

I ¥

Yob— i

Data input D

50 4 3 fDatainput—

S. 1 S, 8, S,

i—i

Select inputs
(a) Block diagram (b) Equivalent circuit

Types of Demultiplexers

1:4 Demultiplexer:

 The single input variable D;, has a path to all four outputs, but the input information is
directed to only one of the output lines depending on the select inputs.

* Enable input should be high to enable demultiplexer. i
Enable (E)| S1| So | Din| Yo | Y1 | Y2 | Y3 s, S
0 X|x|x|[o|o]ofoO -
1 o{oflo|o|o]|o]|o]|Dyisrutdts, ? ? .
Q : 0 : 1 | 1;.;‘ ol ol o Yo=E §1 §O Oin Din = =)___ES1SO Din Y,
1 0|1}010}]0,| 0] 0| Dyisroutedto, 5.5.D.
1 0| 1 1 0 1 0|0 YT: ES;S;D | FL &) —LE Vi
T 431D O o|o0}j0{oO D, is routed to Y, L ES;Sg Din Y,
| 1{ol1]oflo}1]o T2 =B Sl | e 5
1 1|1 0|l0|0]|]O0}0O D;, is routed to Y, * L F—D—— Y3
1 {1 afolo]ofa]f Ys=ESiSeDa _—

1:8 Demultiplexer:

The single input data D;, has a path to all eight outputs, but the input information is
dlrected to only one of the output lines dependlng on the select inputs.

B e

T N — —— SR S ST e el AN S v TS -
- ——

; Enablc | Soled Outputs : - S 8 &
: ll“"lt\ ‘ : ; F? 1% 1}
R ;
E S, Sy Sn Yo Y] \2 Y3 Y4 | YS | Y6 | Y7 | Dino— = ES;5,5,D;,

' D EYE T TR] 3 | i 101 ot ; ‘), —oYy
0 Xt X] X 0:05()J»050l0 0.0I' ; (5.5
10 0 0Baloj0olo]olof0ol0]ESSSE D, | ‘) 25050 Oy

: | ' 't N 3 i i g ; = = ! _ _

- l o .0 *O _l. “;_.0,_ 1[_)in_§MQ~J 0 :Q‘t' O,..‘_.Q__i 0 E S‘) Sl §0 Din ; ﬂfszsﬁo %’Yz

1 011{0!{0]0iDnl0/0]0!0/0}ESSSD | =i

11011, 1]0[{0/0DKhi01010}0JESSSD | 2o)2 lny,

11,00 0{0/0/[0 Dnl0|0|0]|ESS5S5D, L e e Es850,

1 (1fol1 0ololojol0[Dalol0]ESSsD, i e e

1 ojrjrjo | 0[0j0[0]0]|0 §& 0 | ES 515D, T DESZS1_°£ov5 -
1 1/1:1{0/0;0{0/0/]0!0 DpnfESyS SDy | gy,

| o : =\ _ES28:18, Dy,
-, i b

Enable o—

Logic Symbol:

Data D

input

Enable —

E

in

1:8 Y3
DEMUX Yq

Sp S S,

RERRRRR

Select inputs

Expanding Demultiplexer:

To provide larger output needs we can
cascade two or more demultiplexer to get
demultiplexer with more number of
output lines. Such a connection is known
as demultiplexer tree.

1. Design 1:8 demultiplexer using two
1:4 demultiplexers.

Solution:

Step 1: Connect D, signal to D, input of
both the demultiplexers.

Step 2: Connect select lines B and C to
select lines S; and S, of the both
demultiplexer.

Step 3: Connect most significant select
line (A) such that when A=0 DEMUX 1
IS enabled and when A=1 DEMUX 2 is
enabled.

Yy
GIRPPRNN at?
DEMUX1 |—V,
A—o——D"f i —,
$1 S
— 4
St S |y,
Pi 1:4 — s
DEMUX2
E =
| -

Implement 1:16 demultiplexer using 1:4 demultiplexer.

» geleCt 1w v
the Yo |— o
Yiloe Q
Din 1:4 1 1
Demux 2 Y, }|— O,
Ya pr— 03
Yo = 04
O
Din 1:4 Yy 5
Demux 3 Y, }— Og
Y3 e 07
Yo ’
1:4 M1 |
Pin—] Dpemux1 Yo

»18 Yo|— ©Os
I I Din 1:4 YiF— e
Ss S, Demux4 Y,|— O4g
Y3 b— O

Sy So

l
Yo|— ©12
Din 1:4 Y1[— O3
Demux 5§ Yo Oq4
Y3 e 015

Sy So

Implementation of Combinational Logic using Demultiplexer

Implement full subtractor using demultiplexer.

Solution:
Inputs Outputs

A B Bi, D Bout
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

B,,~xm(1,2,3,7)

D=xm(1,2,4,7)

Y

\/,

Yo
Yy
Y,
. 1:8 Y3
- DEMUX y4
Y5
Yg
. Yy

So $4 S, -

A B C

out

Implement the following functions using demultiplexer.

F,(A,B,C)=Xxm(0,3,7)
F,(A,B,C)=Xm(1,2,5)

So

1:8
DEMUX

S Sy

BN

A

B

C

Applications of Demultiplexer:

* It can be used as a decoder.

* It can be used as a data distributor.

* It is used in time division multiplexing at the receiving end as a data separator.
* It can be used to implement Boolean expression.

Demultiplexer ICs:
74154->1:16 Demultiplexer
74155->Dual 1:4 Demultiplexer

Introduction to Hardware Description Language

Various modeling techniques in HDL

e (Gate-level modeling/Structural modeling
e Dataflow modeling

e Behavioral modeling

Structure of HDL module

« Each module consists of a declaration and a body.

Declaration = name, inputs and outputs of the module are listed.

Body-> relationship between the inputs and outputs

A module is a basic building block of Verilog HDL.

Modules can represent pieces of hardware ranging from simple gate to complete systems.

The structure of module is,
module<module name> <port list>;
<declares>
<module items>
endmodule

Operators in Verilog HDL

Boolean logic>(!,&&,||)

Unary reduction logical2 (&, [,%)
Bitwise logical 2> (~&, ~[,~",~)
Relational > (>,>=,<,<=,==,1=)
Binary arithmetic>(+,-,*,/,%)
Other 2 (<<,>>)

Structure of the Data Flow Description

Verilog HDL code for multiplexer with

Verilog HDL code for full adder)
active low enable

module full_add (A,B,Cin,Cout,Sum); module mux 2x1(D0,D1,S,Enbar,Y);
input A,B,Cin; input DO,D1,S,Enbar;
output Sum,Cout; output Y
assign Sum=(A”"B) *Cin; Wire 11,12,13,14;
assign Cout=(A & B)|(Cin & A)|(Cin & B); assign #10 Y=I3|14;
endmodule assign #10 13=D0 & 11 & 12;

assign #10 14=D1 & S & 12;
assign #10 11=~S;
assign #10 12=~Enbar,;

endmodule

Structure of the Behavioral Description

Verilog HDL code for full adder

Verilog HDL code for multiplexer

module full_add (A,B,Cin,Cout,Sum);
input A,B,Cin;
output Sum,Coult;
Reg Sum,Cout;
always@(A,B,Cin)
begin
Sum=(A”"B) *Cin;
Cout=(A & B)|(Cin & A)|(Cin & B);
end
endmodule

module mux 2x1(D0,D1,S,Enbar,Y);
input DO,D1,S,Enbar;
output Y;
Reg Y;
always@(S,D0,D1,Enbar)
begin
If(Enbar==0 & S==1)
begin
Y=DO0;
end
else if(Enbar==0 & S==0)
Y=D1;
else
Y=1"bz;
end
endmodule

Structural/ Gate Level Description

Verilog HDL code for full adder

Verilog HDL code for multiplexer

module full_addER (A,B,Cin,Cout,Sum);
input A,B,Cin;

output Sum,Cout;

Wire S0,C0,C1;

full adder
HA H1(A,B,S0,C0);
HA H2(S0,Cin,Sum,C1);
or (Cout,C0,C1)
endmodule

module HA(A,B,S,C);

input A,B;

output S,C;
xor(S,A,B);
and(C,A,B);

endmodule

module mux 2x1(D0,D1,S,Enbar,Y);
input DO,D1,S,Enbar;
output Y;
and #7 (13,D0,11,12);
or #7 (Y,13,14);
and #7 (14,D1,S,12);
not #7 (11,S);
not #7 (12,Enbar);
endmodule

Kongunadu College of Engineering
And Technology

Y 4 (Autonomous)
N Namakkal - Trichy Main Road, Thottiam
Department of Computer Science and Engineering

24EC304-Digital Logic and Computer
Organization

Presented By
Ms.SUGANYA S

UNIT - 1
COMPUTER FUNDAMENTALS

Functional Units of a Digital Computer: \on
Neumann Architecture - Operation and Operands of
Computer Hardware Instruction - Instruction Set
Architecture (ISA): Memory Location, Address and
Operation - Instruction and Instruction Sequencing -
Addressing Modes, Encoding of Machine Instruction
- Interaction between Assembly and High-Level
Language.

Functional Units of a Digital
Computer

» A computer is an electronic device that
processes data.

» It's composed of five main functional units
that work together.

» These units are essential for fetching data,
processing it, and producing output.

Functional Units of a Digital
Computer(Contd)

» Functional Units:

» Input Unit: Takes data and instructions from the
outside world. (e.g., Keyboard, Mouse)

» Memory Unit: Stores data and instructions.

» Arithmetic & Logic Unit (ALU): Performs
arithmetic (+, -, etc.) and logical operations
(AND, OR, etc.).

» Control Unit: Directs all other units. It's the
"brain” of the computer.

» Output Unit: Sends processed data to the outside
world. (e.g., Monitor, Printer)

Functional Units of a Digital
Computer(Contd)

Mam Lemary

™ 3

seCcndary memecy

INPUT |
DEVICE | ¢ & | our
= A = PUT

DEVICE
cu

ALU

BLOCK DIAGRAM OF A DIGITAL COMPUTER

.

INPUT UNIT

» The input unit is the first point of interaction
between the user and the computer. It allows the
user to provide instructions and data to the
system using input devices such as keyboards,
mice, scanners, and microphones. This unit is
responsible for converting human-readable
information into binary code, which is the
language understood by computers. Once the
information is digitized, it is passed either to the
memory for storage or directly to the central
processing unit (CPU) for immediate processing.

INPUT UNIT(Contd)

!@

Wotcam Cawrrm cortrodeg

W‘W“‘ Input Device of Computer

t"' - -

N
LHJ

Barcode

b Gty gt o4

Suana

el Mousa
Ketoad

MEMORY UNIT

» The memory unit plays a pivotal role in
storing both data and program instructions.
In accordance with the Von Neumann model,
a single memory unit holds all data and
instructions, eliminating the need for
separate storage locations.

Integer Integer
Operand Operand

‘o

AV B

Status
Status
Opcode Y

Integer
Result

MEMORY UNIT (Contd)

» The memory is typically divided into two main
categories: primary and secondary memory.
Primary memory, or main memory (often RAM), is
fast and volatile, serving as the workspace for the
CPU during processing. It temporarily holds data
that the CPU frequently accesses. Secondary
memory, like hard drives and SSDs, offers long-
term storage for data and software. Memory is
further structured using addresses, allowing the
CPU to access specific data quickly and
efficiently.

CONTROL UNIT

» The control unit acts as the coordinator of
the entire computer system. Its primary
function is to interpret instructions fetched
from memory and to direct the operations of
other components accordingly. While it does
not process data itself, it manages the flow of
information between the ALU, memory, and
input/output devices.

CONTROL UNIT(Contd)

» The control unit executes the instruction
cycle, which includes fetching an instruction
from memory, decoding it to determine the
required action, executing the instruction by
signaling other units, and preparing to fetch
the next instruction. It uses control signals to
maintain synchronization and order among
all components.

CONTROL UNIT(Contd)

Step 1.
Fetch
Instruction
the memory

Control Unit

Step 2.
Decode Instruction
Into command

Step 3.
Execute Command

Step 4:
Store
Instruction
In memory

OUTPUT UNIT

» The output unit is responsible for conveying
processed data from the computer to the
user or to another system.

» This unit converts digital information into
human-readable or machine-usable formats.

» Common output devices include monitors,
printers, speakers, and communication
interfaces.

FUNCTIONAL UNIT

Ceniral Processing Unit

Contral Unit

Arithmetic/Lagic Unit Output

Device

OPERATION AND OPERANDS OF
COMPUTER HARDWARE
INSTRUCTION

» In the realm of computer architecture,
hardware instructions form the core set of
commands that a processor can execute.
Each instruction specifies an operation to
perform, such as arithmetic or data transfer,
along with the operands on which the
operation acts.

OPERATION AND OPERANDS OF
COMPUTER HARDWARE
INSTRUCTION(Contd)

[

~ Nachine Iastructiaon Format >

|
e nacde —-4!6—— Cperation Code ~~Ma-w Addrosw Or DOt —
!

Addressing

n CPCOOE > < OPERAND —

o I L e Mot o “Rrerirr bechoect N3y
* DOt B icew NhOw, * LSS nopeenaent Aose

—_ * Froivg Moc » Aclenre Sa8S v Moo
MO0CE ’

o rariodante N, = Indrasd Socrenadne WAaoe

o Flpvor Mk . R Beamim MSoSs

NATURE OF COMPUTER
INSTRUCTION

The Instruction Cycle

.

TYPES OF OPERATION

» Data Movement Operations

» Arithmetic and Logical Operations
» Control Flow Operations

» Input/Output Operations

0 Bus Address

Data
CRU Memary

Control

Interface Interface Interface

L

Monitor Keyboard| |Hard-disk

TYPES OF OPERANDS

INSTRUCTION

OPCODE OFERAND

INSTRUCTION FORMATS

» Instructions come in various formats, depending on the
arc?litecture. A typical instruction format includes fields
such as:

» Opcode: Specifies the operation.

» Source operands: Identifies the data inputs.

» Desti(r:}ation operand: Specifies where the result should be
stored.

> Addressing mode bits: Indicate how operands should be
interpreted.

» Different architectures use different instruction lengths
(fixed or variable). For example, RISC (Reduced Instruction
Set Computing) typically uses fixed-length instructions,
while CISC (Complex Instruction Set Computing) may have
variable-length instructions.

VON NEUMANN ARCHITECTURE -
OVERVIEW

» The Von Neumann Architecture is a design

model for digital computers.

» Proposed by John von Neumann in 1945
» Stored Program Concept
» Sequential instruction execution

» Its key feature is the shared memory for both
data and instructions.

» This is a fundamental concept for how most
modern computers operate.

VON NEUMANN ARCHITECTURE -
COMPONENTS

» CPU (ALU + CU)

» Memory Unit

» Input/Output Devices

» Buses: Data, Address, Control

.

VON NEUMANN ARCHITECTURE
(Contd)

4

Key Features:

Stored-Program Concept: The instructions (program) are
stored in the memory, just like data. This allows the
computer to be reprogrammed.

Single Bus: A single pathway (bus) is used to fetch both
instructions and data from memory. This is a potential
bottleneck, known as the "Von Neumann Bottleneck."

Operation Cycle (Fetch-Decode-Execute):

Fetch: The Control Unit fetches the next instruction from
memory.

Decode: The Control Unit decodes the instruction to
determine what action to perform.

Execute: The Control Unit directs the ALU and other
components to perform the action.

VON NEUMANN ARCHITECTURE
(Contd)

Bz
y Derstze
Addain ik b mee =l | immriace -
[
MEMOTY |, ua wig: [g
-
" 1 | &}
Tavar Gy Bl S— T
s
darvdaion | | prapaws
‘ ‘ FigH
CPU

INSTRUCTION AND OPERANDS

Instruction: Command to CPU
Opcode (Operation Code):

Specifies the operation to be performed (e.g., ADD,
SUB, LOAD, STORE).

Operands:

The data or address on which the operation is to be
performed.

Operands can be registers, memory locations, or
immediate values.

Example: ADD R1, R2, R3
Opcode: ADD
Operands: R1, R2, R3

Meaning: Add the contents of registers R2 and R3
and store the result in register R1.

INSTRUCTION SET ARCHITECTURE
(ISA)

» The ISA is the interface between the software and the
hardware.

It's the complete set of instructions that a particular
processor can execute.

It defines the machine language and the fundamental
commands for a processor.

Components of ISA:

Instruction Set: The set of all available opcodes.
Registers: The processor's internal storage locations.
Memory Model: How memory is organized and addressed.

Addressing Modes: How the location of operands is
specified.

Examples of ISAs:
x86-64 (used in most desktops and laptops)
ARM (used in smartphones and tablets)

ISA (Contd)

"ﬁ‘ Instruction Set Architecture (ISA)

ISA (Contd)

™
)

Instruction Set

Architecture
J

|
|
h 4 A

’I
! Ilicroarchitecture]

))
—~— -

b 4

\.
Registers &
Counters
[S

Combinational &\
Sequential
Circuits

Increasing Level
of Abstraction

MEMORY LOCATION, ADDRESS,
AND OPERATION

» Computer memory is like a large array of
storage cells.

» Each cell has a unique number called an
address.

» The address is used to identify and access the
data stored in that location.

» Operations on Memory:

» Read (Load): Copying data from a memory
location to a processor register.

» Write (Store): Copying data from a processor
register to a memory location.

MEMORY LOCATION, ADDRESS,
AND OPERATION (Contd)

» Program code (instructions)
» Variables (integers, floats, characters)

» Pointers (addresses of other memory
ocations)

» Data structures (arrays, structures, objects)
» Different

-

MEMORY LOCATION, ADDRESS,
AND OPERATION (Contd)

e N bits >
0| n-i ’ . 1 0 b—first word
1 —socond word
2 —pthird word
251 —+last word
| Memory Words

.

MEMORY ADDRESSING
MECHANISMS

4

One of the most critical aspects of ISA is the way it allows
programs to access memory—this is defined through addressing
modes. Addressing modes determine how the effective address
of an operand is calculated. Common addressing modes include:

Immediate Addressing: The operand is part of the instruction
itself. Example: MOV R1, #5 (moves the value 5 into register R1).

Register Addressing: The operand is in a register. Example: ADD
R1, R2 (adds the contents of R2 to R1).

Direct Addressing: The instruction specifies the memory address
(_ilior(e)ccz)t)ly. Example: LOAD R1, 1000 (loads value from address

Indirect Addressing: The address of the operand is held in a
register or memory. Example: LOAD R1, (R2) (loads from address
stored in R2).

INSTRUCTION AND INSTRUCTION
SEQUENCING

» Instruction sequencing is a fundamental
aspect of computer architecture, governing
how a processor retrieves, decodes, and
executes instructions in a predefined or
dynamically altered order.

INSTRUCTION AND INSTRUCTION
SEQUENCING (Contd)

» Understanding Computer Instructions A
computer instruction is a binary-encoded
command that tells the CPU to perform a
specific task.

\lnatmcnon complete, Return for string
foteh poxt Instruction of victor data

TYPES OF INSTRUCTIONS

» Instructions can be categorized based on the
operation they perform:

» Data Movement Instructions: Move data between
registers, memory, and I/0 (e.g., MOV, LOAD,
STORE).

» Arithmetic and Logical Instructions: Perform
calculations (e.g., ADD, SUB, AND, OR).

» Control Flow Instructions: Alter the flow of execution
(e.g., JMP, CALL, RET).

» Comparison Instructions: Compare values to set
condition flags (e.g., CMP).

» Input/Output Instructions: Interact with peripherals
(e.g., IN, OUT).

TYPES OF INSTRUCTIONS

(Contd)

Comanlts
Adress
Cawzubion starty —e | Mova NUMY. RO
nere i+4| Add NUM2 RO
+al Add NUNI RO
l+dn-4A
| = 4dn
SUM
NUMY
NUM2
NUNRD

.

ndnmtruction
Program segmens

o1 Data 1ot the program

ADDRESSING MODES

v Vv Vv VvV Vv

Addressing Modes are different ways of specifying the location of an
operand.

They provide flexibility and efficiency in accessing data.

Common Addressing Modes:

Immediate: The operand is a constant value within the instruction itself.
Register: The operand is in a specified register.

Direct (Absolute): The address of the operand is given directly in the
instruction.

Indirect: The instruction contains the address of a memory location,
which in turn holds the address of the operand.

Indexed: The address of the operand is calculated by adding a constant
offset to a value in an index register.

Immediate, Direct, Indirect
Register, Indexed, Base addressing

ADDRESSING MODES(Contd)

ADDRESSING
'

ADDRESSING MODES(Contd)

Immedate Mddressng Made

alruden Docngs S Cycies
MOV A, 260 TAH 7 |
Peogram Mamoey
ce°? l: » “% bow 4 .‘K. . .
ek | |
om | ' " Fim
g)
s 1
) * — 0§ & ———— m.‘"
o oA 3
&2 M
. SRS) L L IL T
ot I _ Koo N
a0 Prigon Coaete

TYPES OF ADDRESSING MODES

» Each addressing mode has specific characteristics
suited to certain tasks. The following are some of the
most commonly used addressing modes:

v a. Immediate Addressing

» In this mode, the operand is specified explicitly in the
instruction. It is useful for loading constants directly.

» Example: MOV R1, #5 (Move the constant value 5 into
register R1).

» Advantage: Fast and requires no memory access
beyond the instruction itself.

> I_imitﬁtion: Operand size is limited by the instruction
ength.

TYPES OF ADDRESSING MODES
(Contd)

Register Addressing

» Here, the operand is located in a register. The instruction
speC|f|es which register to use.

» Example: ADD R2, R3 (Add the values in R2 and R3).
» Advantage: Fastest access since registers are internal to the CPU.

» ¢. Direct (Absolute) Addressing

» The instruction contains the actual memory address of the
operand.

) E)é%?) ple: LOAD R1, 5000 (Load the data at memory address

» Advantage: Simple and easy to implement.

» Limitation: Limited flexibility for programs needing dynamic
memory access.

» 92

TYPES OF ADDRESSING MODES
(Contd)

Indirect Addressing

» The instruction refers to a memory location that contains the
address of the operand.

» Example: LOAD R1, (R2) (Use the contents of R2 as a pointer to
memory).

» Advantage: Supports pointer-based programming.
» Limitation: Slower due to multiple memory accesses.

» e. Indexed Addressing

» This mode calculates the effective address by adding a base
address and an index value.

» Example: LOAD R1, 100(R3) (Address = 100 + contents of R3).
» Used for: Accessing array elements.

TYPES OF ADDRESSING MODES
(Contd)

Relative Addressing

» Th|s uses the program counter and a constant value to determine
the address.

» Example: JMP +6 (Jump forward by 6 instructions).
» Used in: Branching and loops.

» h. Stack Addressing

» Data is implicitly at the top of the stack; no operand address is
explicitly given.

» Common in: Zero-address machines or stack-based processors.

» Used for: Function calls, returns, and expression evaluation.

TYPES OF ADDRESSING MODES
(Contd)

» Base-Register Addressing

» Similar to indexed addressing, but focuses more on modular
programming where R3 may point to the beginning of a
structure.

» Example: LOAD R1, O(R3)

» Significance of Addressing Modes 93

» Addressing modes provide a balance between hardware
efficiency and software flexibility. A processor with multiple
addressing modes can:

» Support high-level constructs like arrays, pointers, and loops.
» Optimize code size and runtime.
» Enable easier compilation from high-level languages.

ENCODING OF MACHINE
INSTRUCTIONS

Ins;tructions are stored in memory as a sequence of bits (0Os and
1s).
This is called machine code.

The process of converting a human-readable instruction (e.g.,
ADD R1T, R2) into its binary representation is called encoding.

Encoding Process:
Each opcode is assigned a specific binary code.
Each register is also assigned a binary code.

Thde final machine instruction is a combination of these binary
codes.

The ISA defines the exact format and length of the encoded
instructions.

ENCODING OF MACHINE
INSTRUCTIONS(Contd)

Encoding of machine mstructions (Home

Practice)

Y
Courcel Sawrced ;Dot T
IW code M de | AV e AN Lo | el

4 Provide the encoding for Following instructions: |[Homs
Exercive

O 10 R31 = R2T Addition RY,

O 1AM = 12T Divislon RY;

O 12 RI= AT XOR RS,

O 10 AR« AT Multiphication AY;
O AN = R Sebtraction 127,
O 1 HE = WAND My

.

ENCODING OF MACHINE
INSTRUCTIONS(Contd)

Cparatian Chisal Chisal CHsat
: : 3
| =m 12 b 12 b ol |

Z b Zhk

INSTRUCTION FORMAT AND
ENCODING

» Instruction encoding defines how each
instruction is represented in binary. A machine
instruction typically consists of several fields:

» Opcode: Specifies the operation (e.g., ADD,
MOV).

» Operands: Specify source and destination data.

» Addressing mode bits: Indicate how to interpret
operand references.

» Immediate or displacement values: Provide data
directly or support relative addressing.

TYPES OF INSTRUCTION ENCODING
(Contd)

v a&. Fixed-Length Encoding

» All instructions occupy the same number of
bits (e.g., 32 bits).

» Common in: RISC architectures (MIPS, ARM).

» Advantage: Easier to decode; consistent fetch
and execute cycles.

» Disadvantage: May waste bits for simple
Instructions.

TYPES OF INSTRUCTION ENCODING
(Contd)

v b. Variable-Length Encoding

» Instructions vary in size based on complexity
(1 to 15 bytes in x86). 94

» Common in: CISC architectures (Intel x86).

» Advantage: Efficient memory use; complex
operations encoded compactly.

» Disadvantage: Slower decoding, more
complex CPU design.

TYPES OF INSTRUCTION ENCODING
(Contd)

4
4

>

c. Hybrid Encoding

Combines features of fixed and variable-length
encoding.

Example: ARM Thumb mode offers both 16-bit and
32-bit instructions.

Instruction Format Types

Various formats exist to accommodate the types of
operations:

- R-Type (Register): All operands are in registers.

Example: ADD R1, R2, R3

TYPES OF INSTRUCTION ENCODING
(Contd)

v — I-Type (Immediate): Includes an immediate
value.

» Example: ADDI R1, R2, #10

y —J-Type (Jump): Contains a jump address.
» Example: JMP 1024

» These formats are standard in RISC-based
architectures like MIPS and simplify the decoding
process.

ASSEMBLY & HIGH-LEVEL
LANGUAGE INTERACTION

v Vv v WV

v Vv Vv WV

High-Level Languages (HLL) (e.g., C++, Java, Python) are abstract and
human-friendly.

A compiler translates HLL code into a lower-level language.

The final output is often a form of assembly language.

Assembly Language:

A low-level language that is a human-readable representation of
machine code.

Each assembly instruction corresponds to a single machine instruction.
An assembler translates assembly code into machine code.

The Bridge:

High-level code is compiled into assembly code, which is then
assembled into machine code for the processor to execute. This two-
step process allows programmers to write powerful applications without
needing to know the intricate details of the specific ISA.

ASSEMBLY & HIGH-LEVEL
LANGUAGE INTERACTION(Contd)

High Level Langnage

lﬂnmpﬂt
Compile

Assembly Language

‘Assunhlt
. A

Machine Language

.

ASSEMBLY & HIGH-LEVEL
LANGUAGE INTERACTION(Contd)

ADVANTAGES OF USING ASSEMBLY
WITH HIGH-LEVEL LANGUAGES

» Performance: Assembly enables fine-grained
control for time-critical code.

» Hardware Access: Directly control registers,
/O ports, or special CPU instructions.

» Compact Code: Assembly can reduce
instruction count and memory footprint.

» Debugging and Analysis: Understand what
compiled code does under the hood.

DISADVANTAGES AND
CHALLENGES

» Complexity: Writing and understanding
assembly is difficult and time-consuming.

» Portability: Assembly is architecture-specific.

» Maintenance: Harder to update or modify
than high-level code.

» Security Risks: Poorly written assembly can
introduce low-level vulnerabilities.

Kongunadu College of Engineering
And Technology

Y 4 (Autonomous)
N Namakkal - Trichy Main Road, Thottiam
Department of Computer Science and Engineering

24EC304-Digital Logic and Computer
Organization

Presented By
Ms.SUGANYA S

UNIT IV
PROCESSOR

Instruction Execution - Building a Data Path -
Designing a control Unit - Hardwired
Control, Microprogrammed Control -
Pipelining - Data Hazard - Control Hazards.

INSTRUCTION EXECUTION

» INSTRUCTIONS :

» An instruction is a piece of a program that
performs an operation issued by the
computer processor.

» Every instruction is defined by the instruction
set of the processor.

ELEMENTS OF INSTRUCTION

» Operation code: Specifies the operation to be performed.
The operation is specified by binary code, hence the name
operation code or simply opcode.

» Source / Destination operand: The source/destination
operand field directly specifies the source/destination
operand for the instruction.

» Source operand address: The operation specified by the
instruction may require one or more source operands.

» Destination operand address: The operation executed b
the CPU may produce result. Usually, the result is stored in
the destination operand.

» ext instruction address: The next instruction address tells
the CPU from where to fetch the next instruction after
completion of execution of current instruction.

INSTRUCTION SET

» A list of all the instructions with all their
variants that can be executed by a processor
is called instruction set. It is a group of
commands defined by the processor in
machine understandable language.

Format

» An instruction has three fields, namely- 101

» Operation code (Opcode) specifies which type
of operation to be performed.

» Mode Field specifies the way the operand or
effective address is determined.

» Address Field specifies memory address or a
processor register.

Opoode | Mode field

.

Address field

BUILDING A DATAPATH

» Datapath :

» The Datapath is the pathway that the data takes
through the CPU. As the data travels through the data
path, the control unit regulates interaction between
the data path and the data according to the
instruction being executed.

» The data path consists of functional units that
perform data processing operations such as addition,
subtraction, logical AND, OR, inverting, and shifting.

Datapath Elements

» A data path element is a functional unit used
to operate on or hold data within a processor.

» The data path elements are:
» The instruction memory
» The data memory

» The register file

» The arithmetic logic unit (ALU)
» Adders

Instruction Memory

» A memory unit that is used to store the
instructions of a program and supply
instructions given an address

.

Branch Instructions

» The beq instruction has three operands, two

registers that are compared for
equality,andal 6-bit offset used to compute

the branch target address relative to the
branch instruction address.

Branch Instructions

l MemWrite

| AdAress Rdeae:g -

Data
Write ~ Mmemory
data

MemRead

a. Data memory unit b. Sign extension unit

Delayed Branch

» Branches are delayed if the instruction
immediately following the branch is always
executed, independent of whether the branch
condition is true or false.

» When the condition is false, the execution looks
like a normal branch.

» When the condition is true, a delayed branch first

executes the instruction immediately following

the branch in sequential instruction order before
jumping to the specified branch target address.

Datapath for R-type instructions

» The following additional components are
needed for the implementation of the data
path for R-format instructions.

» Register file
» ALU

» The ALU accepts the input from the Data
Read ports of the register file.

» The register file is written by the ALU in
combination with the Reg Write signal.

Datapath for R-type instructions
(Contd)

. ALU operation
Reqd 3 *
register 1 Réad
data 1 :
Read Zero
Instruction register 2

; Reglsters ALU AU
V:g'tet result
register

Read

data

l Regwrnite

Datapath for Load/Store
instruction

» The following additional components are
added to build the datapath for load and
store instruction.

» Data Memory unit

» Sign Extension unit

-

DESIGNING A CONTROL UNIT

» Control units are designed to manage instruction
execution, and can be implemented using either
hardwired logic or microprogrammed
approaches. Hardwired control units use physical
hardware like gates and flip-flops to generate
control signals, making them fast but inflexible.
Microprogrammed control units, on the other
hand, store control signals in memory as
microinstructions, allowing for flexibility and
easier modification, but potentially sacrificing
speed.

HARDWIRED CONTROL

» A hardwired control is a mechanism of
producing control signals using Finite State
Machines (FSM) appropriately. It is designed
as a sequential logic circuit. The final circuit
is constructed by physically connecting the
components such as gates, flip flops, and
drums. Hence, it is named a hardwired

controller.

HARDWIRED CONTROL (Contd)

OP-Lode 1 Y v B
NS \ e [g
M‘
INS

Comrol Sgnak

HARDWIRED CONTROL (Contd)

» Some of the methods that have come up for
1c__|e|figning the hardwired control logic are as
ollows -

» Sequence Counter Method — This is the most
convenient method employed to design the
controller of moderate complexity.

» Delay Element Method — This method is
dependent on the use of clocked delay elements
for generating the sequence of control signals.

» State Table Method — This method involves the
traditional algorithmic approach to design the
Notes controller using the classical state table
method.

HARDWIRED CONTROL-
Advantages

» Because of the use of combinational circuits to
generate signals, Hardwired Control Unit is fast.

» = It depends on number of gates, how much
delay can occur in generation of control signals.

» = It can be optimized to produce the fast mode of
operation.

» = Faster than micro- programmed control unit.
» = [t does not require control memory.

MICROPROGRAMMED CONTROL

» A control unit whose binary control values are
saved as words in memory is called a
microprogrammed control unit.

» A controller results in the instructions to be
implemented by constructing a definite collection
of signals at each system clock beat. Each of
these output signals generates one micro-
operation including register transfer. Thus, the
sets of control signals are generated definite
micro-operations that can be saved in the
memory.

MICROPROGRAMMED
CONTROL(Contd)

» There are the following steps followed by the
microprogrammed control are

» It can execute any instruction. The CPU should divide
it down into a set of sequential operations. This set
of operations are called microinstruction. The

sequential micro-operations need the control signals
to execute.

» Control signals saved in the ROM are created to
execute the instructions on the data direction. These
control signals can control the micro-operations
concerned with a microinstruction that is to be
performed at any time step.

MICROPROGRAMMED
CONTROL(Contd)

Micro Programmed Control Organization

External

Input
Next-Address
Generator
(Sequencer)

I

ontrol addres
register

It

ontrol Memory
(ROM)

|

Control Data Control Word
Register

.

PIPELINING

» Pipelining is an implementation technique in
which multiple instructions are overlapped in
execution. This enables the processors to
complete the tasks faster.

PIPELINING(Contd)

Data
In

Coniral Lini

R

M

stage =

Slage om

Figure - Struclure of 3 Pipeling Pracessor

.

tHr
oud

PIPELINING(Contd)

» Pipeline is divided into five stages.

» Each stage completes a part of an instruction
in parallel. The stages are connected one to
the next to form a pipe like structure.
Instructions enter at one end, progress
through the stages, and exit at the other end.

PIPELINING(Contd)

Pipelined five stages processor

! e]
Feehdm Ll L & Resd || Ll ol A Wi
seatction } Deccue li- Irputs [} Cormpate { Result

, | L |
Prcdine | | :
Latch)

Oneclock Cyele OmechixkCwtle Oneclock Cyele One clock Cyele O cock Cyele

Pipelire Stages

.

PIPELINING(Contd)

» Stages of a pipeline
» MIPS pipeline classically take the following five steps:
» Fetch instruction from memory (IF)

» Read registers while decoding the instruction (ID)

» In MIPS implementation reading and decoding occur
simultaneously.

» Execute the operation or calculate an address(EX)
» Access an operand in data memory(MEM)

» Write back the result into a register(WB)

PIPELINE HAZARDS

» Any condition that causes the pipeline to stall
is called a hazard. It prevents the next
instruction in the instruction stream from
being executing during its designated clock
cycle. These events are called hazards

PIPELINE HAZARDS (Contd)

Resoaror clash

likely

Imstruction

- Memary access reguired

- Memary acceds may be reguinsd

PIPELINE HAZARDS (Contd)

» Types:
» Data hazard

» Control/ Instruction hazard

.

DATA HAZARDS

» It occurs when the data are not available at
the time expected in the pipeline. It is also
called pipeline data hazard.

DATA HAZARDS(Contd)

» It is an occurrence in which a planned
instruction cannot execute in the proper
clock cycle because data that is needed to
execute the instruction is not yet available.

DATA HAZARDS(Contd)

A ‘estbook

Resultof ADD Data
available of AL Fonwarding
autput hare

CONTROL HAZARDS

» It is also called branch hazard or instruction
nazard.

» It occurs when the branching decisions are made
pefore branch condition is evaluated.

» It is an occurrence in which the proper
instruction cannot execute in the proper clock
cycle because the instruction that was fetched is
not the one that is needed.

» The flow of instruction addresses is not what the
pipeline expected.

CONTROL HAZARDS(Contd)

Instruction 1} |F | ID | OF | 1E | OS

Instruction 2 IF | ID|OF | IE | OS i
Instruction 3 . F | 10| OF| IE| OS]
nstructiond. | |0 |oF| IE | oS

Bra.:nch delay

I- Control Hazards

.

Kongunadu College of Engineering
And Technology

Y 4 (Autonomous)
N Namakkal - Trichy Main Road, Thottiam
Department of Computer Science and Engineering

24EC304-Digital Logic and Computer
Organization

Presented By
Ms.SUGANYA S

UNIT V
MEMORY AND |/0O

Memory Concepts and Hierarchy - Memory
Management - Cache Memories: Mapping and
Replacement Techniques - Virtual Memory -
DMA - 1/0O - Accessing 1/0O: Parallel and Serial
nterface - Interrupt |/O - Interconnection

Standards: USB, SATA.

MEMORY CONCEPTS AND
HIERARCHY

» Memory in computer systems is organized in
a hierarchy to optimize speed, cost, and
storage capacity.

» At the top are registers, the fastest and

smallest memory units located within the
CPU.

» Just below are cache memories, which store
frequently accessed data and are faster than
main memory but slower than registers.

MEMORY CONCEPTS AND
HIERARCHY(Contd)

» Main memory (RAM) holds currently running
programs and data and has a larger capacity
than cache. At the bottom is secondary
storage, such as hard drives and SSDs, which
provide large, permanent storage but operate
much more slowly. This hierarchical
arrangement ensures efficient and cost-
effective data access.

MEMORY CONCEPTS AND
HIERARCHY(Contd)

Memory Hierarchy Design

Increase
INCeedse in Capat ity & ACOess Time

Types of Memory Hierarchy

» External Memory or Secondary Memory:

» Comprising of Magnetic Disk, Optical Disk,
and Magnetic Tape i.e. peripheral storage
devices which are accessible by the processor
via an 1I/0 Module.

» Internal Memory or Primary Memory:

» Comprising of Main Memory, Cache Memory
& CPU registers. This is directly accessible by
the processor.

Memory Hierarchy Levels

» Registers

» Registers are small, high-speed memory
units located in the CPU. They are used to
store the most frequently used data and
Instructions.

» Cache Memory

» Cache memory is a small, fast memory unit
located close to the CPU. It stores frequently
used data and instructions that have been
recently accessed from the main memory.

Memory Hierarchy Levels(Contd)

» Main Memory

» Main memory also known as RAM (Random
Access Memory), is the primary memory of a
computer system. It has a larger storage
capacity than cache memory, but it is slower.
Main memory is used to store data and

instructions that are currently in use by the
CPU.

Characteristics of Memory
Hierarchy

>

Access Time:

Registers have the fastest access time, while
secondary storage has the slowest.

Capacity:

Secondary storage has the largest capacity,
while registers have tﬁe smallest.
Cost:

Registers are the most expensive per bit, while
secondary storage is the least expensive.

Locality of Reference:
The principle that programs tend to access the

same data and instructions repeatedly, allowing
caches to store frequently used information.

Advantages of Memory
Hierarchy

» Performance

» Cost Efficiency

» Optimized Resource Utilization
» Efficient Data Management

Disadvantages of Memory
Hierarchy

» Complex Design

» Cost

» Latency

» Maintenance Overhead

.

MEMORY MANAGEMENT

» Memory is a crucial part of a computer used to
store data.

» Since main memory is limited and multiple
processes compete for it, efficient memory
management is essential especially in
multiprogramming systems.

» To enhance performance, several processes must
reside in memory simultaneously.

» Poor memory allocation can leave the CPU idle
while processes wait for 1/0.

» Hence, memory must be managed efficiently to
maximize CPU utilization and system throughput.

MEMORY MANAGEMENT(Contd)

egisters |
j_-l-

[Cacha |
l 4

[Maln Mamory |
T 7

. Electronic Disk |
Y

| M:.g:ntl.: Disk]
.l &
| Optical Disk
.l -

‘ Magnetic Tapes

.

MEMORY MANAGEMENT(Contd)

» Memory management mostly involves
management of main memory. In a
multiprogramming computer, the Operating
System resides in a part of the main memory,
and the rest is used by multiple processes.

» The task of subdividing the memory among
different processes is called Memory
Management.

» The main aim of memory management is to
achieve efficient utilization of memory.

Why Memory Management is
Required?

» Allocate and de-allocate memory before and
after process execution.

» To keep track of used memory space by

processes.
» To minimize fragmentation issues.
» To proper utilization of main memory.

» To maintain data integrity while executing of
process

Logical and Physical Address Space

» Logical Address Space: An address generated by
the CPU is known as a “Logical Address”. It is also
known as a Virtual address. Logical address
space can be defined as the size of the process.
A logical address can be changed.

» « Physical Address Space: An address seen by the
memory unit (i.e. the one loaded into the
memory address register of the memory) is
commonly known as a “Physical Address”. A
Physical address is also known as a Real address.

Logical and Physical Address Space

Relocation
logieal re ister phiysical
CPL) address acdress Memary
346 13346
14000
ML

.

Static and Dynamic Loading

» Static Loading: Static Loading is basically

loading t
address.
» Dynamic
data of a

ne entire program into a fixed
t requires more memory space.

L.oading: The entire program and all

nrocess must be in physical memory

for the process to execute. So, the size of a
process is limited to the size of physical

memory.

Static and Dynamic Linking

» Static Linking: In static linking, the linker
combines all necessary program modules into

a single executable program. So there is no
runtime dependency.

» Dynamic Linking: The basic concept of
dynamic linking is similar to dynamic loading.
In dynamic linking, “Stub” is included for each
appropriate library routine reference.

Static and Dynamic Linking

506408 progLan | -4 Trangawe o Lt - o Lowd

Swapping

» When a process is executed it must have
resided in memory.

» Swapping is a process of swapping a process
temporarily into a secondary memory from
the main memory, which is fast compared to
secondary memory.

» A swapping allows more processes to be run
and can be fit into memory at one time.

» The main part of swapping is transferred time
and the total time is directly proportional to
the amount of memory swapped.

Swapping(Contd)

 —

s

»

gr——————

Twappsd Ot > Frocess 'l

C———
.

[N T o] J ¥

-~ —_—
\

[ON Mty

5 ;!

.

Memory Management Techniques

» Memory management techniques are
methods used by an operating system to
efficiently allocate, utilize, and manage
memory resources for processes.

» These techniques ensure smooth execution
of programs and optimal use of system

memory

Memory Management Techniques
(Contd)

Contigvous | | Pactioned | | Fagecemory

Memory Management
Techniques(Contd)

» Memory Management with
Monoprogramming (Without Swapping)

» This is the simplest memory management
approach the memory is divided into two
sections:

» One part of the operating system
» The second part of the user program

Memory Management
Techniques(Contd)

» Multiprogramming with Fixed Partitions
(Without Swapping)

» « A memory partition scheme with a fixed
number of partitions was introduced to
support multiprogramming. this scheme is
based on contiguous allocation

» « Each partition is a block of contiguous
memory

» « Memory is partitioned into a fixed number
of partitions.

» « Each partition is of fixed size

Memory Management
Techniques(Contd)

» Partition Table

Once partitions are defined operating
system keeps track of the status of memory
partitions it is done through a data structure
called a partition table.

Memory Management
Techniques(Contd)

» Logical vs Physical Address

» An address generated by the CPU is
commonly referred to as a logical address.
the address seen by the memory unit is
known as the physical address. The logical
address can be mapped to a physical address
by hardware with the help of a base register
this is known as dynamic relocation of
memory references.

Memory Management
Techniques(Contd)

» Contiguous Memory Allocation

» Contiguous memory allocation is a memory
management method where each process is
given a single, continuous block of memory.
This means all the data for a process is
stored in adjacent memory locations.

Memory Management
Techniques(Contd)

» Partition Allocation Methods

» To gain proper memory utilization, memory
allocation must be allocated efficient manner.
One of the simplest methods for allocating
memory is to divide memory into several
fixed-sized partitions and each partition
contains exactly one process.

Memory Management
Techniques(Contd)

» Non-Contiguous Memory Allocation

» Non-contiguous memory allocation is a
memory management method where a
process is divided into smaller parts, and
these parts are stored in different, non-
adjacent memory locations.

» Techniques of Non-Contiguous Memory
Allocation are:

» Paging

» Segmentation

Memory Management
Techniques(Contd)

» Fragmentation

» Fragmentation is defined as when the process
is loaded and removed after execution from
memory, it creates a small free hole. These
holes cannot be assigned to new processes
because holes are not combined or do not
fulfil the memory requirement of the process.

)

Memory Management Techniques
(Contd) - Fragmentation

Internial Fragentation

|-1'::|=|f’f)r R\“I-"-‘-“ 1 kH

wikh)
.-_i B

Allcnled Wisted *aln
Slemnry Space Wemary Spare Memary Spare

.

Memory Management
Techniques(Contd)

» Types of fragmentation are:

» Internal fragmentation: Internal
fragmentation occurs when memory blocks
are allocated to the process more than their
requested size. Due to this some unused

space is left over and creating an internal
fragmentation problem.

Memory Management
Techniques(Contd)

» Types of fragmentation(Contd):

» External fragmentation: In External
Fragmentation, we have a free memory block,
out we cannot assign it to a process because
olocks are not contiguous.

CACHE MEMORIES

» Cache memory is a small, high-speed storage
area in a computer. The cache is a smaller
and faster memory that stores copies of the
data from frequently used main memory
locations.

» There are various independent caches in a
CPU, which store instructions and data.

CACHE MEMORIES (contd)

o
,l,-:llll

T
o

Cache Mamary P

.

Prirary Mednidry

Secondany Mamany

CACHE MEMORIES(Contd)

Characteristics of Cache Memory

» Extremely fast memory type that acts as a
buffer between RAM and the CPU.

» Holds frequently requested data and
instructions, ensuring that they are
immediately available to the CPU when
needed.

» Costlier than main memory or disk memory
but more economical than CPU registers.

» Used to speed up processing and synchronize
with the high-speed CPU.

CACHE MEMORIES(Contd)

» Key Features of Cache Memory

» Speed: Faster than the main memory (RAM),
which helps the CPU retrieve data more
quickly.

» Proximity: Located very close to the CPU,

often on the CPU chip itself, reducing data
access time.

» Function: Temporarily holds data and
instructions that the CPU is likely to use again
soon, minimizing the need to access the
slower main memory.

CACHE MEMORIES(Contd)

» The role of cache memory is explained below,

» « Cache memory plays a crucial role in
computer systems.

» - It provides faster access.

» « It acts buffer between CPU and main
memory(RAM).

» « Primary role of it is to reduce average time
taken to access data, thereby improving.
overall system performance.

CACHE MEMORIES(Contd)

» In order to understand the working of cache
we must understand few points:

» Cache memory is faster, they can be accessed
very fast

» Cache memory is smaller, a large amount of
data cannot be stored

CACHE MEMORIES(Contd)

» Application of Cache Memory

» « Primary Cache

» « Secondary Cache

» - Spatial Locality of Reference

» « Temporal Locality of Reference

CACHE MEMORIES(Contd)

» Advantages

» Cache Memory is faster in comparison to
main memory and secondary memory.

» Programs stored by Cache Memory can be
executed in less time.

» The data access time of Cache Memory is less
than that of the main memory.

» Cache Memory stored data and instructions
that are reqgularly used by the CPU, therefore
it increases the performance of the CPU.

MAPPING AND REPLACEMENT
TECHNIQUES

4
4

Cache Mapping

Cache mapping refers to the method used to store
data from main memory into the cache. It determines
how data from memory is mapped to specific
locations in the cache.

Need of Replacement Algorithm:

Set associative mapping is a combination of direct
mapping and fully associative mapping.

It uses fully associative mapping within each set.

Thus, set associative mapping requires a replacement
algorlthm

MAPPING AND REPLACEMENT
TECHNIQUES (Contd)

4

Virtual Memary Mapping

Socandary

Blecks

Processor

> Storage
Hages

Main Memory

VIRTUAL MEMORY

» Virtual memory is a memory management
technique used by operating systems to give
the appearance of a large, continuous block
of memory to applications, even if the

ohysical memory (RAM) is limited. It allows

arger applications to run on systems with
ess RAM.

VIRTUAL MEMORY(Contd)

page 0

page 1

page 2

page v

virtual

V 4

memory

map

Physical
Memory

VIRTUAL MEMORY(Contd)

» How Virtual Memory Works?

» All memory references within a process are logical
addresses that are dynamically translated into
physical addresses at run time. 126

» This means that a process can be swapped in and out
of the main memory such that it occupies different
places in the main memory at different times during
the course of execution.

» A process may be broken into a number of pieces and
these pieces need not be continuously located in the
main memory during execution.

» The combination of dynamic run-time address
translation and the use of a page or segment table
permit this.

VIRTUAL MEMORY(Contd)

» Types of Virtual Memory

» In @ computer, virtual memory is managed by
the Memory Management Unit (MMU), which
is often built into the CPU. The CPU generates
virtual addresses that the MMU translates into
physical addresses.

» There are two main types of virtual memory:
» Paging
» Segmentation

VIRTUAL MEMORY(Contd)

» Paging divides memory into small fixed-size
blocks called pages. When the computer runs out
of RAM, pages that aren’t currently in use are
moved to the hard drive, into an area called a
swap file.

» The swap file acts as an extension of RAM. When
a page is needed again, it is swapped back into
RAM, a process known as page swapping.

» This ensures that the operating system (OS) and
applications have enough memory to run.

» Demand Paging: The process of loading the page
into memory on demand (whenever a page fault
occurs) is known as demand paging.

VIRTUAL MEMORY(Contd)

» Segmentation

» Segmentation divides virtual memory into
segments of different sizes. Segments that
aren’t currently needed can be moved to the
hard drive.

» The system uses a segment table to keep
track of each segment’s status, including
whether it’s in memory, if it’s been modified,
and its physical address.

» Segments are mapped into a process’s
address space only when needed.

VIRTUAL MEMORY(Contd)

» Swapping is a process out means removing
all of its pages from memory, or marking
them so that they will be removed by the
normal page replacement process.

» Suspending a process ensures that it is not
run able while it is swapped out.

» At some later time, the system swaps back
the process from the secondary storage to
the main memory.

» When a process is busy swapping pages in
and out then this situation is called thrashing.

VIRTUAL MEMORY(Contd)

» Thrashing:

» At any given time, only a few pages of any
process are in the main memory, and
therefore more processes can be maintained
in memory. Furthermore, time is saved
because unused pages are not swapped in
and out of memory.

DMA- Direct Memory Access

» In modern computer systems, transferring
data between input/output devices and
memory can be a slow process if the CPU is
required to manage every step. To address
this, a Direct Memory Access (DMA)
Controller is utilized.

DMA(Contd)

Attached Device

DMA Controller

DMA(Contd)

» DMA Controller

» Direct Memory Access (DMA) uses hardware
for accessing the memory.

» This hardware is called a DMA Controller. It
has the work of transferring the data between
input, output devices and main memory with
very less interaction with the processor.

» The Direct Memory Access Controller is a
control unit, which has the work of
transferring data.

DMA Controller

Address Bus
rd
3 A >
A /] ‘Dala Bus . Memfy
| Control Bus
- - >
8G -)2 I
] ¥
L. BG 110 Data ¢t
DMA 10
Controlter Degice
BR 1O Control 4+

DMA(Contd)

» Types of DMA

» Single-Ended DMA: In this type, the DMA
controller is connected only to one device
(usually either the memory or the 1/0 device),
and it directly controls data transfer.

» Dual-Ended DMA: The DMA controller is
connected to both the source and the
destination, typically memory and an 1/0O
device.

DMA(Contd)

» Types of DMA
» Arbitrated-Ended DMA: In systems with

multip
IS heeC

e DMA devices or masters, arbitration
ed to decide which device gets control

of the
Ended

ous. It is more advanced than Dual-
DMA.

» Interleaved DMA: Interleaved DMA are those
DMA that read from one memory address and
write from another memory address.

DMA(Contd)

» Working of DMA Controller

» The DMA controller registers have three
registers as follows.

» Address register: It contains the address to
specify the desired location in memory.

» Word count register: It contains the number
of words to be transferred.

» Control register: It specifies the transfer
mode.

/O - ACCESSING 1/0O: PARALLEL
AND SERIAL INTERFACE

» The method that is used to transfer information
between internal storage and external I/0
devices is known as |I/0 interface.

» The CPU is interfaced using special
communication links by the peripherals
connected to any computer system.

» These communication links are used to resolve
the differences between CPU and peripheral.

» There exists special hardware components
between CPU and peripherals to supervise and
synchronize all the input and output transfers
that are called interface units.

/O - ACCESSING 1/0O: PARALLEL
AND SERIAL INTERFACE

——————

INTERRUPT 1/0

» An interrupt I/O is a process of data transfer
in which an external device or a peripheral

informs the CPU that it is ready for
communication and requests the attention of
the CPU.The terminals send and receive serial

information.

INTERRUPT 1/0 (Contd)

INTR REQUEST

INTR ACKNOWLEDGE

INTERCONNECTION STANDARDS:
USB

» USB was designed to standardize the
connection of peripherals like pointing
devices, keyboards, digital images and video
cameras.

» But some devices such as printers, portable
media players, disk drives, and network
adaptors to personal computers used USB to
communicate and to supply electric power.

USB(Contd)

[r— (r—
USE Cable

USB USB

Host | Device(s)

Fig, 8.11.1 USB system

.

USB(Contd)

Front view

e

Front view

(a) (b)

Fig. 8.11.2 USB connector

INTERCONNECTION
USB(Contd)

STANDARDS:

» Universal Serial Bus (USB) is an industry
standard that establishes specifications for

connectors, cables, and

srotocols for

communication, connection, and power

supply between persona
peripheral devices.

computers and their

» There have been 3 generations of USB

specifications:
» USB 1.x
» USB 2.0

» USB 3.x

USB(Contd)

Types of USB

[
:

USB Type C Micro USB Mini USB

.

Serial Advanced Technology
Attachment (SATA)

» SATA stands for Serial Advanced Technology
Attachment or Serial ATA. SATA is an
interface that connects various storage
devices such as hard disks, optical drives
SSD’s, etc to the motherboard.

SATA (Contd)

TPinsfor ~ G
data 4

15 Pins for f ."
power "

.

Serial Advanced Technology
Attachment (SATA)(Contd)

» SATA operates on two modes:

» 1. IDE mode: IDE stands for Integrated Drive
Electronics. This is a mode which is used to

Nard
ow

» 2. A

orovide backward compatibility with older

ware, which runs on PATA, at the cost of
nerformance.

HCIl mode: AHCI is abbreviation for

Advanced Host Controller Interface. AHCl is a
high-performance mode that also provides
support for hot-swapping.

SATA (Contd)

» Characteristics of SATA

» Low Voltage Requirement: SATA operates on
500mV (0.5V) peak-to-peak signaling.

» Differential Signaling: SATA uses differential
signaling. Differential signaling is a
technology which uses two adjacent wires to
simultaneously the in-phase and out- of-
phase signals.

» « High data transfer rate: SATA has a high
data transfer rate of 150/300/600
MBs/second.

SATA (Contd)

SATA (Contd)

» Advantages of SATA

» Faster data transfer rate as compared to
PATA.

» SATA cable can be of length upto 1 meter,
whereas PATA cable can only have length of
maximum 18 inches.

» SATA cables are smaller in size.

» Since, they are smaller in size; they take up
less space inside the computer and increase
the internal air flow.

