
KONGUNADU COLLEGE OF
ENGINEERING AND TECHNOLOGY

(AUTONOMOUS)

DEPATMENT OF COMPUTER SCIENCE
AND ENGINEERING

SUBJECT CODE:24EC304

SUBJECT NAME:DIGITAL LOGIC AND
COMPUTER ORGANIZATION

UNIT-I

DIGITAL FUNDAMENTALS
• Number Systems – Decimal, Binary, Octal,

Hexadecimal, radix conversion ,1's and 2's
complements, Codes – Binary, BCD, Excess 3,
Gray, Alphanumeric codes, Boolean theorems
& Postulates, Logic gates, Universal gates, Sum
of products and product of sums, Minterms
and Maxterms, Karnaugh map Minimization

UNIT-I

BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems:

Number system is a basis for counting various items

The decimal number system has 10 digits:0,1,2,3,4,5,6,7,8 and 9

Types of Number Systems:

System Base Symbols

Decimal 10 0,1,2,….9

Binary 2 0,1

Octal 8 0,1,2,….7

Hexa-decimal 16 0,1,2,….9,A,B,…F

Decimal Hexadecimal Binary (421/8421)

0 0 (0)000

1 1 (0)001

2 2 (0)010

3 3 (0)011

4 4 (0)100

5 5 (0)101

6 6 (0)110

7 7 (0)111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Conversion among Bases

Binary to Octal

• Group into 3's starting at least significant bit (if the number of
bits is not evenly divisible by 3, then add 0's at the most
significant end)

• write 1 octal digit for each group

• e.g.:(001010101)2 to ()8

001 010 101

4 2 1

1 2 5 1 0 0

Answer = 1258

e.g.:(010101101.011100)2 to ()8

(0)10 101 101 . 011 1(00)

2 5 5 . 3 4 (255.34)8

Octal to Binary

• For each of the Octal digit write its binary equivalent

e.g.: (257)8 to ()2

2 5 7

010 101 111

Answer = (010101111)2

e.g.: (125.62)8 to ()2

1 2 5 . 6 2

001 010 101 . 110 010

(1010101.11001)2

Binary to Hexadecimal
• Group into 4's starting at least significant bit (if the number of

bits is not evenly divisible by 4, then add 0's at the most

significant end)

• write 1 hex digit for each group.

• e.g.: (001010111011)2 to ()16

(00)10 1011 1011

11

2 B B

Answer = (2BB)16

e.g.: (001101101110.10011010) 2 to ()16

(00)11 0110 1110 . 1001 101(0)

3 6 E . 9 A (36E.9A)16

Hexadecimal to Binary

• For each of the Hex digit write its binary

equivalent(use 4 digits to represent)

• e.g.: (8A9.B4)16 to ()2

8 A 9 . B 4

1000 1010 1001 . 1011 0100

(100010101001.101101)2

Octal to Hexadecimal
Steps:

1.Convert octal number to its binary equivalent

2.Convert binary number to its hexadecimal equivalent

e.g.: (615.25)8 to ()16

6 1 5 . 2 5

110 001 101 . 010 101

1 1000 1101 .0101 01

(000)1 1000 1101 . 0101 01(00)

1 8 D . 5 4

(615.25)8 (110001101.010101) 2 (18D.54)16

Step 1

Step 2

Hexadecimal to Octal
Steps:

1. Convert hexadecimal number to its binary equivalent

2. Convert binary number to its octal equivalent

e.g.: (BC66.AF)16to ()8

B C 6 6 . A F

1011 1100 0110 0110 . 1010 1111

(00)1011110001100110.10101111(0)

001 011 110 001 100 110 . 101 011 110

1 3 6 1 4 6 . 5 3 6

(BC66.AF)16 (1011110001100110) 2 (136146.536)8

Step 1

Step 2

Converting any radix to decimal

• Converting from any base to decimal is done by multiplying

each digit by its weight and summing.

• Ex: Convert (3102.12)4 to its decimal equivalent

N=3*43+1*42+0*41+2*40+1*4-1+2*4-2

=192+16+0+2+0.25+0.125=(210.375)10

• Ex: Determine the value of base x, if (193) x = (623)8

Converting octal into decimal : (623)8= 6*82+2*81+3*80 =(403)10

(193) x=1*x2+9*x1+3*x0 = (403)10

x2+9x+3=403 x=16 or -25

Negative not applicable so (193) 16=(623)8

Conversion of Decimal number to any Radix number

Steps:

1. Convert integer part (Successive Division Method)

2. Convert fractional part (Successive Multiplication Method)

• Steps in Successive Division Method:

➢ Divide the integer part of decimal number by desired base number, store

quotient (Q) and remainder (R)

➢ Consider quotient as a new decimal number and repeat step1 until quotient

becomes 0

➢ List the remainders in the reverse order

• Steps in Successive Multiplication Method:

➢ Multiply the fractional part of decimal number by desired base number

➢ Record the integer part of product as carry and fractional part as new

fractional part

➢ Repeat steps 1 and 2 until fractional part of product becomes 0 or until you

have many digits as necessary for your application

➢ Read carries downwards to get desired base number

• Convert 12.125 decimal to binary

• Integer Part:

(12)10 = (1100)2

• Fractional Part:

(0.125)10 = (0.001)2

(12.125)10 = (1100.001)2

• Convert 5386.345 decimal to hexadecimal

• Integer Part:

(5386)10 = (150A)16

• Fractional Part:

(0.345)10 = (0.585)16

(5386.345)10 = (150A.585)16

1’s Complement

The 1’s complement of a binary number is the number that results

when we change all 1’s to zeros and the zeros to ones.

2’s Complement

The 2’s complement the binary number that results when add 1 to

the 1’s complement.

2’s complement = 1’s complement + 1

1 1 0 1 0 1 0 0 Number

NOT operation

0 0 1 0 1 0 1 1 1’s Complement

1 1 0 0 0 1 0 0 Number

NOT operation

1 1 Carry

0 0 1 1 1 0 1 1 1’s Complement

1 Add 1

0 0 1 1 1 1 0 0 2’s Complement

• 9’s Complement

The nines' complement of a decimal digit is the number that must be
added to it to produce 9. The complement of 3 is 6, the complement of
7 is 2.

• Example: Obtain 9’s complement of 7493
9 9 9 9

- 7 4 9 3

2 5 0 6 →9’s complement

10’s Complement
The 10’s complement of the given number is obtained by adding 1 to
the 9’s complement.
10’s complement = 9’s complement + 1
Example: Obtain 10’s complement of 7493

9 9 9 9 2 5 0 6
- 7 4 9 3 + 1

-------- ---------
2 5 0 6 2 5 0 7 10’s complement

Arithmetic Operations
Binary Addition

• The addition consists of four possible elementary operations:

• Perform addition of (11001100)2 and (11011010)2

S.No Operations

1 0+0=0

2 0+1=1

3 1+0=1

4 1+1=10(0 with carry 1)

In the last case, sum is of two

digits: Higher Significant bit is

called Carry and lower significant

bit is called Sum.

1 1 1 1 Carry

1 1 0 0 1 1 0 0 Number 1

(+) 1 1 0 1 1 0 1 0 Number 2

1 1 0 1 0 0 1 1 0 Result

• Add (28)10 and (15)10 by converting them to binary

(28)10= (11100)2 (15)10= (1111)2

2 28 0

2 14 0

2 7 1

2 3 1

2 1

2 15 1

2 7 1

2 3 1

2 1

1 1 1 Carry

1 1 1 0 0 (28)10

(+) 0 1 1 1 1 (15)10

1 0 1 0 1 1 (43)10

2 43 1

2 21 1

2 10 0

2 5 1

2 2 0

1

Binary Subtraction

• The subtraction consists of four possible elementary

operations:

• Perform (11101100)2 -(00110010)2

S.No Operations

1 0-0=0

2 0-1=1 (borrow 1)

3 1-0=1

4 1-1=0

In case of second operation

the minuend bit is smaller

than the subtrahend bit,

hence 1 is borrowed.

(10) 0 10 0 10

1 1 1 0 1 1 0 0 Number 1

(-) 0 0 1 1 0 0 1 0 Number 2

1 0 1 1 1 0 1 0 Result

Binary Subtraction using 1’s complement

• Perform subtraction using 1’s complement (11010)2 -

(10000)2

Step 1: 1’s complement negative number

(10000)2 (01111)2

Step 2: Add (11010)2 and (01111)2

1 1 1 1

1 1 0 1 0

0 1 1 1 1

1 0 1 0 0 1

1

0 1 0 1 0

Add end-around

carry

Note: If carry is generated then the result is positive and in the true form so

aa carry to the result to get final result

• Perform subtraction using 1’s complement (15)10 -(28)10

Binary equivalent:(1111)2 -(11100)2

Step 1: 1’s complement negative number

(11100)2 (00011)2

Step 2: Add (1111)2 and (00011)2

1 1 1 1

0 1 1 1 1 (15)10

(+) 0 0 0 1 1 1,s complement of (28)10

1 0 0 1 0 Result

In this case the carry is not generated then the result is negative and in the
1’s complement form

0 1 1 0 1 Verification (1’s complement form of result)
(13)10

Binary Subtraction using 2’s complement

• Perform subtraction using 2’s complement binary arithmetic (147)10

-(89)10

• Step 1: Binary equivalent (010010011)2 -(01011001)2

• Step 2: Find 2’s complement of (89)10

0 1 0 1 1 0 0 1 Binary equivalent of (89)10

1 0 1 0 0 1 1 0 1’s complement of (89)10

1 Add 1

1 0 1 0 0 1 1 1 2’s complement of (89)10

1 1 1 1 1

0 1 0 0 1 0 0 1 1 Binary equivalent of (147)10

(+) 1 1 0 1 0 0 1 1 1 2’s complement of (89)10

1 0 0 0 1 1 1 0 1 0 Result

Note: If carry is generated then the result is positive and in the true form so the carry is

ignored.

Binary Subtraction using 2’s complement
• Perform subtraction using 2’s complement (42)10 -(68)10

• Step 1: Binary equivalent (101010)2 -(1000100)2

• Step 2: Find 2’s complement of (68)10

1 0 0 0 1 0 0 Binary equivalent of (68)10

0 1 1 1 0 1 1 1’s complement of (68)10

1 Add 1

0 1 1 1 1 0 0 2’s complement of (68)10

1 1

0 1 0 1 0 1 0 Binary equivalent of (42)10

(+) 0 1 1 1 1 0 0 2’s complement of (68)10

1 1 0 0 1 1 0 Result

Note: If carry is not generated then the result is negative and in the 2’s complement form

1 1 0 0 1 1 0 Result

0 0 1 1 0 0 1 1’s complement

1 2’s complement

0 0 1 1 0 1 0 (26)10

Binary Multiplication

Rules for Binary Multiplication are:

Multiply (101.11)2 and (110.01)2 using binary multiplication method

S.No Operations

1 0*0=0

2 0*1=0

3 1*0=0

4 1*1=1

1 0 1 . 1 1 Multiplicand

x 1 1 0 . 0 1 Multiplier

1 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 1 1 1 0 0 0

1 0 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 Final

Fractional digits in the final product=Fractional digits in multiplicand +Fractional digits in

multiplier =2+2=4 → (101.11)2 x (110.01)2 = (100011.1111)2

Binary Division

Rules for Binary Division are:

Divide (11011011)2 by (110)2

No. Rule

1 0 ÷ 1 = 0

2 1 ÷ 1 = 1

 1 0 0 1 0 0

1 1 0 1 1 0 1 1 0 1 1

 1 1 0

 0 0 0 1 1 0

 1 1 0

 0 0 0 1 1

Binary Codes

• When numbers, alphabets or words are represented by a

specific group of symbols i.e., they are encoded

• The group of symbols used to encode them is called codes.

The digital data is represented, stored and transmitted as

groups of binary digits (bits)

• Group of bits--- binary code---- numeric and alphanumeric

code

Classification of binary codes

• Weighted codes:

– In weighted codes, each digit position of the number
represents a specific weight

– Examples: 93→(1001)(0011)→ 8421 code

93→(1100)(0011)→5421 code

• Non-weighted codes :

– Non-weighted codes are not assigned with any weight to
each digit position, i.e., each digit position within the
number is not assigned fixed value

– Excess-3 and gray codes are the non-weighted codes

• Reflective codes:

– A code is said to be reflective when the code for 9 is the
complement for 0, the code for 8 is complement for 1, 7 for
2,6 for 3 and 5 for 4.

– Like 2421,codes 5211 and excess-3 are also reflective.

– The 8421 code is not reflective

• Sequential codes

– In sequential codes each succeeding code is one binary
number greater than its preceding code.

– This greatly aids mathematical manipulation of data

– The 8421 and excess-3 are sequential, whereas the 2421
and 5211 codes are not sequential

• Alphanumeric codes

– The codes which consists of both numbers and alphabetic
characters are called alphanumeric codes.

– Most of these codes, however, also represent symbols and
various instructions necessary for conveying intelligible
information

– The most commonly used alphanumeric codes are: ASCII,
EBCDIC and Hollerith code

• Error detecting and correcting codes

– When the digital information in the binary form is
transmitted from one circuit or system to another circuit or
system an error may occur.

– This means the signal corresponding to 0 may change to 1
or vice-versa due to presence of noise

– To maintain data integrity between transmitter and receiver,
extra bit or more than one bit are added in the data.

– These extra bits allow the detection and sometimes the
correction of error in the data.

– The data along with the extra bit /bits form the code

– Codes which allow only error detection are called error
detecting codes and codes which allow error detection and
correction are called error detecting and correcting codes

• BCD(Binary Coded Decimal) codes

– BCD is a numeric code in which each digit of a decimal

number is represented by a separate group of 4-bits.

Decimal BCD Code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

5 8 Decimal

0101 1000
BCD

Code

Advantages:

• Easy to convert between it and decimal

Disadvantages:

• Less efficient

• Arithmetic operations are more complex

• Excess-3 code
– The excess-3 code can be derived from the natural BCD code by

adding 3 to each coded number.

– It is a non-weighted code

– It is a sequential code

– In excess-3 code we get 9’s complement of a number by just

complementing each bit. Due to this excess-3 code is called self-

complementing code or reflective code. Decimal Excess-3 code

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

• Gary code

– Gray code is a non-weighted code and is a special case of unit-distance
code

– In unit distance code, bit patterns for two consecutive numbers differ
in only one bit position.

– These codes are also called as cyclic codes.

– The gray code is also called reflected code.

Application of Gray code

• Let us consider an application where 3-bit binary code is provided to
indicate position of the rotating disk with the help of brushes.

• If one brush is slightly ahead of the other, an 180° error occur in the
disk position.

• When the gray code is used to represent disk position then error due to
improper brush alignment can be reduced. This is because the gray
code assures that only one bit will change each time the decimal
number is incremented.

• In 3-bit code probability of error is reduced upto 66% and in 4-bit code
it is reduced upto 75%. This is an advantage of gray code.

Gray to Binary Conversion:

Exclusive OR operation

Convert gray code 101011 into its binary equivalent.

(101011) gray = (110010) 2

A B AꚚB

0 0 0

0 1 1

1 0 1

1 1 0

1 0 1 0 1 1 Gray code

Exclusive OR operation

1 1 0 0 1 0 Binary code

Binary to Gray code:

Convert 10111011 in binary into its equivalent gray

code.

1 0 1 1 1 0 1 1 Binar
y
code

1 1 1 0 0 1 1 0 Gray
code

Exclusive OR
operation

BCD Addition

• Case 1: Sum equals 9 or less with carry 0

Addition of 3 and 6 in BCD

• Case 2: Sum greater than 9 with carry 0

1 1 Carry

0 1 1 0 BCD for 6

+ 0 0 1 1 BCD for 3

1 0 0 1 BCD for 9

0 1 1 0 BCD for 6

+ 1 0 0 0 BCD for 8

1 1 1 0 Invalid BCD number (14)

1 1 1 0 Invalid BCD number (14)

0 1 1 0 Add 6 for correction

1 0 1 0 0 Answer

0 0 0 1 0 1 0 0 BCD for 14

• Case 3: Sum greater than 9 with carry 0

Carry

1 0 0 0 BCD for 8

+ 1 0 0 1 BCD for 9

1 0 0 0 1 Incorrect BCD number

0 0 0 1 0 1 1 1 BCD for 17

0 0 0 1 0 0 0 1 Incorrect BCD number

0 0 0 0 0 1 1 0 Add 6 for correction

0 0 0 1 0 1 1 1 Answer

BCD Subtraction using 9’s complement

Perform (46)10 –(22) 10 in BCD using 9’s complement.

Step 1: Find 9’s complement of 22

9’s complement of 22=(99-22)=77

Step 2:Add 46 and 9’s complement of 22

1 1 1 Carry

0 1 0 0 0 1 1 0 BCD of 46

+ 0 1 1 1 0 1 1 1 BCD of 77

1 0 1 1 1 1 0 1 Invalid BCD numbers

1 0 1 1 1 1 0 1 Invalid BCD numbers

+ 0 1 1 0 0 1 1 0 Add 6 in each digit

1 0 0 1 0 0 0 1 1

1 Add end around carry

0 0 1 0 0 1 0 0 Result (BCD of 24)

Since there is carry the result is positive and true

BCD Subtraction using 9’s complement

Perform (24)10 –(56) 10 in BCD using 9’s complement.

Step 1: Find 9’s complement of 56

9’s complement of 56=(99-56)=43

Step 2:Add 24 and 9’s complement of 56

Step 3: Take 9’s complement of answer

99-67=32➔24-56=32

Carry

0 0 1 0 0 1 0 0 BCD of 24

+ 0 1 0 0 0 0 1 1 BCD of 43

0 1 1 0 0 1 1 1 BCD of 67

Since there is 0 the result is negative

BCD Subtraction using 10’s complement

Perform (46)10 –(22) 10 in BCD using 9’s complement.

Step 1: Find 10’s complement of 22

10’s complement of 22=9’s complement of 22+1 =(99-22)+1=78

Step 2:Add 46 and 10’s complement of 22

1 Carry

0 1 0 0 0 1 1 0 BCD of 46

+ 0 1 1 1 1 0 0 0 BCD of 78

1 0 1 1 1 1 1 0 Invalid BCD numbers

1 0 1 1 1 1 1 0 Invalid BCD numbers

+ 0 1 1 0 0 1 1 0 Add 6 in each digit

1 0 0 1 0 0 1 0 0

Carry is ignored

0 0 1 0 0 1 0 0 Result (BCD of 24)

Since there is carry the result is positive and true

BCD Subtraction using 10’s complement

Perform (24)10 –(56) 10 in BCD using 10’s complement.

Step 1: Find 10’s complement of 56

9’s complement of 56=(99-56)+1=44

Step 2:Add 24 and 10’s complement of 56

Step 3: Take 10’s complement of answer

(99-68)+1=32➔24-56=32

Carry

0 0 1 0 0 1 0 0 BCD of 24

+ 0 1 0 0 0 1 0 0 BCD of 44

0 1 1 0 1 0 0 0 BCD of 68

Since there is 0 the result is negative

Excess-3 Addition:

a)Carry is generated:8+6

1 0 1 1 Excess-3 for 8

+ 1 0 0 1 Excess-3 for 6

1 0 1 0 0 Carry is 1

0 0 0 1 0 1 0 0

0 0 1 1 0 0 1 1 Add 3

0 1 0 0 0 1 1 1 Result (Excess-3 for 14)

1 4 Result in decimal

Excess-3 Addition:

a)Carry is not generated:1+2

0 1 0 0 Excess-3 for 1

+ 0 1 0 1 Excess-3 for 2

0 1 0 0 1 Carry is 0

0 1 0 0 1

0 0 1 1 Sub 3

0 1 1 0 Result (Excess-3 for 3)

3 Result in decimal

Excess-3 Subtraction:

a)Carry is generated:8-5

1 0 1 1 Excess-3 for 8

+ 0 1 1 1 Complement of 5 in Excess-3

1 0 0 1 0 Carry is 1

1 0 0 1 0

0 0 1 1 Add 3

1 0 1 0 1 Result (Excess-3 for 3)

1 Add end-around carry

0 1 1 0 Excess-3 for 3

1 0 0 0 Excess-3 for 5

0 1 1 1 Complement

Excess-3 Subtraction:

a)Carry is not generated:5-8

1 0 0 0 Excess-3 for 5

+ 0 1 0 0 Complement of 8 in Excess-3

0 1 1 0 0 Carry is 0

0 1 1 0 0

0 0 1 1 Sub 3

0 1 0 0 1 Result (Excess-3 for 3)

1 0 1 1 Excess-3 for 8

0 1 0 0 Complement

Boolean Algebra

• Boolean algebra is a mathematical system that defines a series

of logical operations (AND,OR,NOT) performed on sets of

variables (a,b,c,….).

• When stated in this form, the expression is called a Boolean

equation or switching equation.

Terminologies :

Variable: The symbol which represent an arbitrary elements of

an Boolean algebra is known as variable.

Any single variable or a function of several variables can have

either a 1 or 0 value.

Constant: In expression Y=A+1, the first term A is a variable

and the second term has a fixed value 1. So 1 is a constant here.

The constant may be 1 or 0.

Complement: A complement of a variable is presented by a

“bar” over the letter and sometimes denoted by (`).

Example: 𝐴 is the complement of the variable A, if A=0 →𝐴 =1

and A=1→𝐴 =0

Literal: Each occurrence of a variable in Boolean function either

in a complemented or an uncomplemented form is called a literal.

Boolean Function: Boolean expressions are constructed by

connecting the Boolean constants and variables with the Boolean

operations. These Boolean expressions are also known as

Boolean formulae.

We use Boolean expressions to describe the Boolean functions.

Example: f(A,B,C)= (A+ 𝐵)C

Properties of Boolean Algebra

• Closure Property

Closure(a): Closure with respect to operator +: when two binary
elements are operated by operator +, the result is a unique binary
element.

Closure(b):Closure with respect to operator .(dot): when two
binary elements are operated by operator .(dot), the result is a
unique binary element.

• Identity property: A.1=1.A=A

• Commutative property

Commutative with respect to +: A+B=B+A

Commutative with respect to . : A.B=B.A

1
A

A

0

A
A

• Distributive property

A.(B+C)=(A.B)+(A.C)

A+(B.C)=(A+B).(A+C)

• Associative property

A+(B+C)=(A+B)+C

(A.B).C=A(B.C)

• Complement property

A.𝐴=0 A+𝐴=1

• Idempotency property

A.A=A A+A=A

• Absorption property

A+AB=A(1+B)=A

A(A+B)=A+AB=A

• Involution property

𝐴=A

De Morgan's Theorem

Theorom:1

the complement of the product of all the terms
is equal to the sum of the complement of each
term.

Theorom:2

• the complement of the sum of all the terms is
equal to the product of the complement of
each term.

• De-Morgan’s theorem

• Principle of duality:

• The principle of duality theorem says that, starting with
a Boolean relation, we can derive another Boolean
relation by,

• Changing the OR sign to an AND sign

• Changing each AND sign to an OR sign and

• Complementing any 0 or 1 appearing in the expression.

• Dual of relation→A+ഥ𝑨=1 is A.ഥ𝑨=0

A B 𝑨𝑩 ഥ𝑨+ഥ𝑩

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

A B 𝑨 + 𝑩 ഥ𝑨. ഥ𝑩

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

• Consensus Law:

• In simplification of Boolean expression, an expression of the form

AB+ഥ𝑨C+BC the term BC is redundant and can be eliminated to

form the equivalent expression AB+ഥ𝑨C. The theorem used for this

simplification is known as consensus theorem and it is stated as

AB+ഥ𝑨C+BC=AB+ഥ𝑨C

Proof:

AB+ഥ𝑨C+BC= AB+ഥ𝑨C+(A+ഥ𝑨)BC

= AB+ഥ𝑨C+A BC +ഥ𝑨 BC

=AB(1+C)+ഥ𝑨C(1+B)

=AB+ഥ𝑨C

• Prove the following Boolean identities

(𝒙𝟏+𝒙𝟐) 𝒙𝟏 𝒙𝟑 + 𝒙𝟑 (𝒙𝟐 + 𝒙𝟏𝒙𝟑) = 𝒙𝟏𝒙𝟐
(𝑥1+𝑥2) 𝑥1 𝑥3 + 𝑥3 (𝑥2 + 𝑥1𝑥3)
= (𝑥1+𝑥2) 𝑥1 𝑥3 + 𝑥3 (𝑥2 . 𝑥1𝑥3)

= (𝑥1+𝑥2) 𝑥1 𝑥3 + 𝑥3 (𝑥2 . (𝑥1 + 𝑥3))
= (𝑥1+𝑥2) 𝑥1 𝑥3 + 𝑥3 (𝑥2 𝑥1 + 𝑥2𝑥3)

= (𝑥1+𝑥2) 𝒙𝟏 + 𝒙𝟑 (𝑥2 𝑥1 + 𝑥2𝑥3) (since A+𝐴𝐵 = 𝐴 + 𝐵)

= (𝑥1𝑥1 + 𝑥2𝑥1 + 𝑥1𝑥3 + 𝑥2𝑥3) (𝑥2 𝑥1 + 𝑥2𝑥3)

= (0 + 𝑥2𝑥1 + 𝑥1𝑥3 + 𝑥2𝑥3) (𝑥2 𝑥1 + 𝑥2𝑥3) (since A𝐴 = 0)
= 𝑥2𝑥1𝑥2 𝑥1 + 𝑥1𝑥3𝑥2 𝑥1 + 𝑥2𝑥3𝑥2 𝑥1 + 𝑥2𝑥1𝑥2𝑥3
+ 𝑥1𝑥3𝑥2𝑥3 + 𝑥2𝑥3𝑥2𝑥3
= 𝑥2𝑥1𝑥2 𝑥1 + 0 + 𝑥2𝑥3𝑥2 𝑥1 + 𝑥2𝑥1𝑥2𝑥3 + 0 + 0

= 𝑥2 𝑥1 + 𝑥2𝑥3𝑥1 + 𝑥1𝑥2𝑥3
= 𝑥2 𝑥1(1 + 𝑥3 + 𝑥3) (Since 1+A=1) = 𝑥2 𝑥1

• Prove the following using DeMorgan’s theorem

𝑥 + 𝑦 ′ + 𝑥 + 𝑦 ′ ′ = 𝑥 + 𝑦

= ((𝑥 + 𝑦) + (𝑥 + 𝑦)

= 𝑥 + 𝑦 . 𝑥 + 𝑦
= 𝑥 + 𝑦 . 𝑥 + 𝑦

= 𝑥 + 𝑦 (since A.A=A)

Boolean expression

• Boolean expressions are constructed by connecting the Boolean

constants and variables with the Boolean operations.

f(A,B,C,D)=A+ 𝐵𝐶+AC𝐷

Sum of Product form:(SOP)

𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶 + 𝐴 ത𝐵 ҧ𝐶

𝑓 𝑃, 𝑄, 𝑅, 𝑆 = ത𝑃𝑄 + 𝑄𝑅 + 𝑅𝑆

Product Terms

Sum

Product Terms

Sum

Also known as disjunctive

normal form or disjunctive

normal formula

• Product of Sum form (POS)

𝑓 𝐴, 𝐵, 𝐶 = 𝐴 + 𝐵 . (ത𝐵 + ҧ𝐶)

𝑓 𝑃, 𝑄, 𝑅, 𝑆 = ത𝑃 + 𝑄 . 𝑄 + 𝑅 . (𝑅 + 𝑆)

Sum terms

Product

Sum terms

Product

Conjunctive normal formula

or conjunctive normal form

Standard (Canonical) SOP &

Standard (Canonical) POS Form

• If each term in the SOP form contains all the literals then the SOP

form is known as standard or canonical SOP form.

• Each individual term in the standard SOP form is called minterm.

𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐵𝐶 + 𝐴 ത𝐵 ҧ𝐶 + 𝐴 ത𝐵𝐶

• If each term in POS form contains all the literals then the POS form

is known as standard or canonical POS form.

• Each individual term in the standard SOP form is called maxterm.

𝑓 𝐴, 𝐵, 𝐶 = 𝐴 + 𝐵 + 𝐶 . (𝐴 + ത𝐵 + ҧ𝐶)

Converting Expressions in Standard SOP form

Step 1: Find the missing literal in each product term if any.

Step 2:AND each product term having missing literal(s) with term(s) form

by ORing the literal and its complement.

Step 3:Expand the terms by applying distributive law and reorder the literals

in the product terms.

Step 4:Reduce the expression by omitting the repeated product terms if any.

Example: Convert the given expression in standard SOP form.

f(A,B,C)=AC+AB+BC

Solution:

Step 1: Find the missing literals in each product term

f(A,B,C)=AC+AB+BC

Literal A is missing

Literal C is missing

Literal B is missing

Step 2: AND product term with missing (literal + its complement)

f(A,B,C)=AC . (B+ 𝐵)+AB . (C+ 𝐶)+BC . (A+ 𝐴)

Step 3:Expand the terms and reorder the literals

Expand: f(A,B,C)=ACB + AC𝐵 +ABC+AB𝐶 +BCA + BC𝐴

Reorder: f(A,B,C)=ABC + A𝐵C+ABC+AB𝐶 +ABC+𝐴BC

Step 4: Omit repeated product terms

f(A,B,C)=ABC + A𝐵C+ABC+AB𝐶 +ABC+𝐴BC

f(A,B,C)=ABC + A𝑩C+AB𝑪 +𝑨BC

Original product terms

Missing literals and

their complements

Converting Expressions in Standard POS form

Step 1: Find the missing literal in each sum term if any.

Step 2:OR each sum term having missing literal(s) with term(s) form

by ANDing the literal and its complement.

Step 3:Expand the terms by applying distributive law and reorder the

literals in the sum terms.

Step 4:Reduce the expression by omitting the repeated sum terms if

any.

Example: Convert the given expression in standard POS form. Y=A .

(A+B+C)

Solution:

Step 1: Find the missing literals in each sum term

Y(A,B,C)=A . (A+B+C)

Literals B and C are missing

Step 2: OR sum term with (missing literal . its complement)

Y=[A+(B. 𝐵)+ (C. 𝐶)]. (A+B+C)

Step 3: Expand the terms and reorder literals

Y=(A+B).(A+𝐵)+ (C. 𝐶)]. (A+B+C)

Y=(A+B+C).(A+𝐵+C) . (A+B+ 𝐶). (A+𝐵+𝐶). (A+B+C)

Step 4: Omit repeated sum terms

Y=(A+B+C). (A+𝐵+C) . (A+B+ 𝐶). (A+𝐵+ 𝐶). (A+B+C)

Y=(A+B+C). (A+𝑩+C) . (A+B+ 𝑪). (A+𝑩+ 𝑪)

M Notations: Minterms and Maxterms

• Each individual term in standard SOP form is called minterm and

each individual term in standard POS form is called maxterm.

• In general, for a n-variable logical function there are 2n minterms

and an equal number of maxterms.

• Each minterm is represented by mi and each maxterm is represented

by Mi , where the subscript i is the decimal number equivalent of the

natural binary number.

• Σ, mi → denotes sum of product form(SOP)

• Π, Mi → denotes product of sum form(POS)

Minterms and Maxterms for three variables

Decimal Variables Minterms

(SOP)

Maxterms

(POS)

A

(4)

B

(2)

C

(1)

mi Mi

0 0 0 0 ഥAഥB തC=m0 A+B+C =M0

1 0 0 1 ഥAഥB C=m1 A+B+ ҧ𝐶 =M1

2 0 1 0 ഥA BതC=m2 A+ ത𝐵 + 𝐶 =M2

3 0 1 1 ഥA BC=m3 A+ ത𝐵 + ҧ𝐶 =M3

4 1 0 0 AഥB തC=m4
ҧ𝐴 +B+C =M4

5 1 0 1 AഥB C=m5
ҧ𝐴 +B+ ҧ𝐶 =M5

6 1 1 0 ABതC=m6
ҧ𝐴 + ത𝐵 + 𝐶

=M6

7 1 1 1 ABC=m7
ҧ𝐴 + ത𝐵 + ҧ𝐶

=M7

Minterms

and

Maxterms

for four

variables

Decimal Variables Minterms Maxterms

A B C D mi Mi

0 0 0 0 0

1

2

3

4

5

6

7

8

9

10 1 0 1 0

11

12

13

14

15 1 1 1 1

Examples:

f(A,B,C)=ABC + A 𝐵C +AB 𝐶 + 𝐴BC

=m7 + m5 + m6 + m3

=Σm(3,5,6,7)

Y=(A+B+C). (A+𝐵+C) . (A+B+ 𝐶). (A+𝐵+ 𝐶)

=M0 . M2 . M1 . M3

=πM(0,1,2,3)

Complements of Standard Forms:

f(A,B,C)= m7 + m5 + m6 + m3 = M0 . M1 . M2 . M4

f(A,B,C)= Σm(3,5,6,7) =πM(0,1,2,4)

In case of four variables,

f(A,B,C,D)= Σm(0,2,3,5,6,7,11,13,14) = πM(1,4,8,9,10,12,15)

Express F=A+B’C as sum of minterms.

Solution:

𝐴 + ത𝐵𝐶 = 𝐴 𝐵 + ത𝐵 𝐶 + ҧ𝐶 + 𝐴 + ҧ𝐴 ത𝐵𝐶
= (𝐴𝐵 + 𝐴 ത𝐵) 𝐶 + ҧ𝐶 + 𝐴 ത𝐵𝐶 + ҧ𝐴 ത𝐵𝐶

= 𝐴𝐵𝐶 + 𝐴 ത𝐵𝐶 + 𝐴𝐵 ҧ𝐶 + 𝐴 ത𝐵 ҧ𝐶 + 𝐴 ത𝐵𝐶 + ҧ𝐴 ത𝐵𝐶

=Σm(7,5,6,4,5,1)

=Σm(1,4,5,6,7)

Express the following F=XY+X’Z in product of maxterm.

K-map Minimization

• During the process of simplification of Boolean

expression we have to predict each successive step

• We can never be absolutely certain that an expression

simplified by Boolean algebra alone is the simplest

possible expression

• On the other hand, the map method gives us a

systematic approach for simplifying a Boolean

expression

• The map method, first proposed by Veitch and

modified by Karnaugh, hence it is known as the

Veitch diagram or the Karnaugh map.

Advantages of K-Maps

• The K-map simplification technique is simpler and
less error-prone compared to the method of
solving the logical expressions using Boolean
laws.

• It prevents the need to remember each and every
Boolean algebraic theorem.

• It involves fewer steps than the algebraic
minimization technique to arrive at a simplified
expression.

• K-map simplification technique always results in
minimum expression if carried out properly.

MINIMIZATION

MINIMIZATION

One-Variable, Two-Variable, Three-Variable and Four-

Variable Maps

• The basis of this method is a graphical chart known as Karnaugh

map (K-map)

• It contains boxes called cells.

• Each of the cell represents one of the 2n possible products that can

be formed from n variables.

• Thus, a 2-variable map contains 22 =4 cells, a 3-variable map

contains 23 =8 cells and so forth.

A

0

1

B

A 0 𝐵 1 B

0 𝐴

1 A

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴

1 A
1-Variable map

(2 cells) 2-Variable map

(4 cells)

3-Variable map

(8 cells)

4-variable map (16 cells)

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵

01
𝐴 𝐵

11
AB

10
𝐴 𝐵

One-Variable, Two-Variable, Three-Variable and Four-

Variable Maps

Representation:

B

A 0 𝐵 1 B

0 𝐴 m0 m1

1 A m2 m3

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 m0 m1 m3 m2

1 A m4 m5 m7 m6

1-Variable map

(2 cells)

2-Variable map

(4 cells)
3-Variable map

(8 cells)

A

0 m0

1 m1

A

0 0

1 1

B

A 0 𝐵 1 B

0 𝐴 0 1

1 A 2 3

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 1 3 2

1 A 4 5 7 6

4-variable map (16 cells)

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵

m0 m1 m3 m2

01
𝐴 𝐵

m4 m5 m7 m6

11
AB

m12 m13 m15 m14

10
𝐴 𝐵

m8 m9 m11 m10

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵 0 1 3 2

01
𝐴 𝐵 4 5 7 6

11
AB

12 13 15 14

10
𝐴 𝐵

8 9 11 10

One-Variable, Two-Variable, Three-Variable and Four-

Variable Maps

Representation(POS):

B

A 0 B 1𝐵

0 A M0 M1

1 𝐴 M2 M3

B+C
A

00
𝐵 + 𝐶

01
B+𝐶

11
𝐵 + 𝐶

10
𝐵+C

0 A M0 M1 M3 M2

1 𝐴 M4 M5 M7 M6

1-Variable map

(2 cells)

2-Variable map

(4 cells)
3-Variable map

(8 cells)

A

0 M0

1 M1

A

0 0

1 1

B

A 0 B 1 𝐵

0 A 0 1

1 𝐴 2 3

B+C
A

00
𝐵 + 𝐶

01
B+𝐶

11
𝐵 + 𝐶

10
𝐵+C

0 A 0 1 3 2

1 𝐴 4 5 7 6

4-variable map (16 cells)

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵

M0 M1 M3 M2

01
A+𝐵

M4 M5 M7 M6

11

𝐴 + 𝐵
M12 M13 M15 M14

10
𝐴+B

M8 M9 M11 M10

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵 0 1 3 2

01
A+𝐵 4 5 7 6

11

𝐴 + 𝐵

12 13 15 14

10
𝐴+B

8 9 11 10

Plotting a K-map

Cell: the smallest unit of a Karnaugh map, corresponding to one

line of a truth table. The input variables are the cell’s co-ordinates

and the output variable is the cell’s contents.

No. Inputs Output

A B C Y

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0𝐴 0 0 1 1 0 3 0 2

1 A 1 4 1 5 1 7 0 6

No. Inputs Output

A B C D Y

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 0

7 0 1 1 1 1

8 1 0 0 0 0

9 1 0 0 1 1

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 0

14 1 1 1 0 1

15 1 1 1 1 1

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
1

0

1

1

0

3

1

2

01
𝐴 𝐵

0

4

1

5

1

7

0

6

11
AB

1

12 13

1

15

1

14

10
𝐴 𝐵 0 8

1

9

0

11

0

10

Representing Standard SOP on K-Map

• Plot the Boolean expression 𝑌 = 𝐴𝐵 ҧ𝐶 + 𝐴𝐵𝐶 + ҧ𝐴 ത𝐵𝐶 on the Karnaugh

map.

• Plot the Boolean expression 𝑌 = 𝐴𝐵 ҧ𝐶𝐷 + 𝐴𝐵𝐶𝐷 + ҧ𝐴 ത𝐵𝐶𝐷 + ҧ𝐴 ത𝐵 ҧ𝐶ഥ𝐷 +
ABCഥ𝐷 + ҧ𝐴𝐵𝐶ഥ𝐷 on the Karnaugh map.

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 1 1 0 3 0 2

1 A 0 4 0 5 1 7 1 6

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵 0 1 3 2

01
𝐴 𝐵 4 5 7 6

11
AB

12 13 15 14

10
𝐴 𝐵

8 9 11 10

• Represent the following in Karnaugh map f(a,b,c)=Σm(1,4,6,7)

• Represent the following in Karnaugh map f(w,x,y,z)=Σm(1,2,5,6,7,11,14)

bc
a

00

𝑏 𝑐

01

𝑏 c

11
bc

10
b𝑐

0 𝑎 0 0 1 1 0 3 0 2

1 a 1 4 0 5 1 7 1 6

yzw
x

𝑦 𝑧
00

𝑦𝑧
01

yz
11

y𝑧
10

00
𝑤 𝑥 0 1 3 2

01
𝑤 𝑥 4 5 7 6

11
wx

12 13 15 14

10
𝑤𝑥

8 9 11 10

Representing Standard POS on K-Map:

• Plot the Boolean expression Y=(A+B+C). (A+𝐵+C) . (A+B+ 𝐶). (A+𝐵+ 𝐶)

• Plot the expression F(A,B,C,D)=(A+B+C+D). (A+𝐵+C+D) . (A+B+ 𝐶 + 𝐷).

(A+𝐵+ 𝐶 + 𝐷) . (A+B+ ҧ𝐶 + 𝐷)

B+C
A

00
𝐵 + 𝐶

01
B+𝐶

11
𝐵 + 𝐶

10
𝐵+C

0 A 0 0 01 0 3 0 2

1 𝐴 1 4 1 5 1 7 1 6

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵 0 1 3 2

01
A+𝐵 4 5 7 6

11

𝐴 + 𝐵

12 13 15 14

10
𝐴+B

8 9 11 10

• Represent the function in k-map f=πM(1,4,6,9,11)

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵

1

0 0 1

1

3

1

2

01
A+𝐵 0 4

1

5

1

7

0

6

11

𝐴 + 𝐵

1

12

1

13

1

15

1

14

10
𝐴+B

1

8 0 9

0

11

1

10

Grouping cells for simplification

• Once the Boolean function is plotted on the Karnaugh

map we have to use grouping technique to simplify

the Boolean function.

• The grouping is nothing combining terms in adjacent

cells.

• Two cells are said to be adjacent if they conform the

single change rule.,i.e., there is only one variable

difference between co-ordinates of two cells.

Grouping Two Adjacent Ones(Pair)

00 01 11 10

00
0 1 3 2

01

4 5 7 6

11

12 13 15 14

10

8 9 11 10

00 01 11 10

00

0 1 3 2

01

4 5 7 6

11

12 13 15 14

10

8 9 11 10

Neighbouring cells in
the row are adjacent

Neighbouring cells in the
column are adjacent

00 01 11 10

00
0 1 3 2

01
4 5 7 6

11

12 13 15 14

10

8 9 11 10

00 01 11 10

00
0 1 3 2

01
4 5 7 6

11

12 13 15 14

10

8 9 11 10

Adjacent cells
A

d
jacen

t cells

Leftmost and corresponding
rightmost cells are adjacent

Top and corresponding bottom
cells are adjacent

𝑌 = ҧ𝐴𝐵𝐶 + 𝐴𝐵𝐶

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 1 1 3 2

1 A 4 5 1 7 6

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 0 1 1 3 0 2

1 A 0 4 0 5 1 7 0 6

𝑌 = 𝐵𝐶

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 1 1 1 3 0 2

1 A 0 4 0 5 0 7 0 6

ҧ𝐴𝐶

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 1 1 1 3 0 2

1 A 0 4 0 5 1 7 0 6

𝑌 = ҧ𝐴 ത𝐵𝐶 + ҧ𝐴𝐵𝐶 + 𝐴𝐵𝐶

𝐵𝐶

𝑌 = ҧ𝐴𝐶 + 𝐵𝐶

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵 0 1 1 3 2

01
𝐴 𝐵 4 5 7 6

11
AB

12 13 15 14

10
𝐴 𝐵 8 1 9 11 10

𝑌 = ത𝐵 ҧ𝐶𝐷

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 1 1 1 3 0 2

1 A 0 4 0 5 1 7 1 6

Grouping four adjacent ones(Quad)

BC
A

00

𝐵 𝐶

01

𝐵 C

11
BC

10

B𝐶

0 𝐴 0 0 0 1 0 3 0 2

1 A 1 4 1 5 1 7 1 6 A

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
0

0

1

1

0

3

0

2

01
𝐴 𝐵

0

4

1

5

0

7

0

6

11
AB

0

12

1

13

0

15

0

14

10
𝐴 𝐵 0 8

1

9

0

11

0

10

ഥ𝑪𝑫

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
0

0

0

1

0

3

0

2

01
𝐴 𝐵

0

4

1

5

1

7

0

6

11
AB

0

12

1

13

1

15

0

14

10
𝐴 𝐵 0 8

0

9

0

11

0

10 𝑩𝑫

𝐴ഥ𝐷

ത𝐵ഥ𝐷

Grouping Eight Adjacent Ones (Octet)

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
0

0

1

1

1

3

0

2

01
𝐴 𝐵

0

4

1

5

1

7

0

6

11
AB

0

12

1

13

1

15

0

14

10
𝐴 𝐵 0 8

1

9

1

11

0

10

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
0

0

0

1

0

3

0

2

01
𝐴 𝐵

1

4

1

5

1

7

1

6

11
AB

1

12

1

13

1

15

1

14

10
𝐴 𝐵 0 8

0

9

0

11

0

10

D

B

ത𝐵 ഥ𝐷

Illegal Grouping

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
0

0

0

1

1

3

0

2

01
𝐴 𝐵

0

4

1

5

0

7

0

6

11
AB

0

12

0

13

0

15

0

14

10
𝐴 𝐵 0 8

0

9

0

11

0

10

Grouping odd number
of cells is illegal

Diagonal grouping is
illegal

• Reduce the following using k-map

Y= ҧ𝐴 ത𝐵 ҧ𝐶ഥ𝐷 + ҧ𝐴 ത𝐵𝐶ഥ𝐷 + 𝐴𝐵𝐶ഥ𝐷 + 𝐴 ത𝐵𝐶ഥ𝐷 + 𝐴 ത𝐵𝐶𝐷 + 𝐴 ത𝐵 ҧ𝐶ഥ𝐷 + 𝐴𝐵 ҧ𝐶ഥ𝐷 + ҧ𝐴 ത𝐵𝐶𝐷

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵 1 0 0 1 1 3 1 2

01
𝐴 𝐵 0 4 0 5 0 7 0 6

11
AB 1 12 0 13 0 15 1 14

10
𝐴 𝐵 1 8 0 9 1 11 1 10

a)F(a,b,c,d)=Σ(0,1,2,4,5,7,11,15)

b)F(A,B,C)=Σ(0,3,4,7)

c) F(A,B,C,D)=Σ(0,3,5,7,8,9,10,12,15)

d)Minimize Y=ഥ𝑨𝑩ഥ𝑪ഥ𝑫 + ഥ𝑨𝑩ഥ𝑪𝑫 + 𝑨𝑩ഥ𝑪ഥ𝑫 + ഥ𝑨ഥ𝑩𝑪ഥ𝑫

Essential Prime Implicants

• After grouping the cells, the sum terms appear in the k-map are

called essential prime implicants groups.

• Some cells may appear in only one prime implicants group; while

other cells may appear in more than one prime implicants group.

• The cells which appear in only one prime implicant group are called

essential cells and corresponding implicants are called essential

prime implicants.

Incompletely Specified Functions(Don’t Care Terms)

• In some logic circuits, certain input conditions never occur,

therefore the corresponding output never appears. In such cases the

output level is not defined, it can be either HIGH or LOW. These

output levels are indicated by ‘X’ or ‘d’ in the truth tables and are

called don’t care outputs or don’t care conditions or incompletely

specified functions.

• Find the reduced SOP form of the following function.

F(A,B,C,D)=Σm(1,3,7,11,15)+Σd(0,2,4)

F(W,X,Y,Z)= Σm(0,7,8,9,10,12)+ Σd(2,5,13)

F(a,b,c,d)= Σ(0,2,4,5,6,8)+ Σφ(10,11,12,13,14,15)

CD
AB

𝐶 𝐷
00

𝐶𝐷
01

CD
11

𝐶𝐷
10

00

𝐴 𝐵
X

0

1

1

1

3

X

2

01
𝐴 𝐵

X

4

0

5

1

7

0

6

11
AB

0

12

0

13

1

15

0

14

10
𝐴 𝐵 0 8

0

9

1

11

0

10

F(a,b,c,d)= Σ(0,2,4,5,6,8,10,15)+ Σφ(7,13,14)

Simplification of POS Expression

• Minimize the following expression
ҧ𝐴 + ത𝐵 + 𝐶 + 𝐷 ҧ𝐴 + ത𝐵 + ҧ𝐶 + 𝐷 ҧ𝐴 + ത𝐵 + ҧ𝐶 + ഥ𝐷 ҧ𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + ത𝐵 + ҧ𝐶 + 𝐷 (𝐴

+ ത𝐵 + ҧ𝐶 + ഥ𝐷)(𝐴 + 𝐵 + 𝐶 + 𝐷)(ҧ𝐴 + ത𝐵 + 𝐶 + ഥ𝐷)

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵 0 1 3 2

01
A+𝐵 4 5 7 6

11

𝐴 + 𝐵

12 13 15 14

10
𝐴+B

8 9 11 10

• Reduce the following function using K-map technique

f(A,B,C,D)=πM(0,2,3,8,9,12,13,15)

C+D
A+B

C+D
00

𝐶 + 𝐷
01

𝐶 + 𝐷
11

𝐶+D
10

00
𝐴 + 𝐵 0 1 3 2

01
A+𝐵 4 5 7 6

11

𝐴 + 𝐵

12 13 15 14

10
𝐴+B

8 9 11 10

• Reduce the following function f(A,B,C,D)=π(0,3,4,7,8,10,12,14)+d(2,6)

• Simplify f(x,y,z)= πM(3,5,7)

• Simplify F(A,B,C,D)=Σ(0,1,2,5,8,9,10) in sum of products and product

of sums using K-map.

• Simplify the Boolean expression in sum of products and product of

sums using K-map,𝑨ഥ𝑪 + ഥ𝑩𝑫 + ഥ𝑨𝑪𝑫 + 𝑨𝑩𝑪𝑫

Five variable K-Map
F(A,B,C,D,E)=Σm(0,5,6,8,9,10,11,16,20,24,25,26,27,29,31)

𝑨 (0) A(1)

DE
BC

𝐷 𝐸
00

𝐷𝐸
01

DE
11

D𝐸
10

00

𝐵 𝐶 0 1 3 2

01
𝐵𝐶 4 5 7 6

11
BC

12 13 15 14

10
B𝐶 8 9 11 10

DE
BC

𝐷 𝐸
00

𝐷𝐸
01

DE
11

D𝐸
10

00

𝐵 𝐶 16 17 19 18

01
𝐵𝐶 20 21 23 22

11
BC

28 29 31 30

10
B𝐶 24 25 27 26

Rules for simplifying logic function using K-map are:

• Group should not include any cell containing a zero.

• The number of cells in a group must be a power of 2,such as 1,2,4,8

or 16.

• Group may be horizontal, vertical but not diagonal.

• Cell containing 1 must be included in at least one group

• Groups may overlap.

• Each group should be as large as possible to get maximum

simplification.

• Groups may be wrapped around the map. The leftmost cell in a row

may be grouped with the rightmost cell and the top cell in a column

may be grouped with the bottom cell.

• A cell may be grouped more than once. The only condition is that

every group must have at least one cell that does not belong to any

other group. Otherwise redundant terms will result.

• We need not group all don’t care cells, only those that actually

contribute to a maximum simplification.

Limitations of Karnaugh map

• The map method of simplification is convenient as long

as the number of variables does not exceed five or six.

• As the number of variable increases it is difficult to make

judgments about which combinations form the minimum

expression.

• Another important point is that the K-map simplification

is manual technique and simplification process is heavily

depends on the human abilities.

Logic gates

NOT GATE:

SYMBOL: PIN DIAGRAM:

AND GATE:

SYMBOL: PIN DIAGRAM:

OR GATE:

NOR GATE:

2-INPUT NAND GATE:

SYMBOL: PIN DIAGRAM:

X-OR GATE :

SYMBOL : PIN DIAGRAM :

A

X X = (A + B)’

B

Name Symbol Function Truth Table

AND
A X = A • B

X or

B X = AB

0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

OR
A

X X = A + B

B

I A X X = A’
0 1
1 0

Buffer A X X = A

A X
0 0
1 1

NAND
A

X X = (AB)’

B

0 0 1
0 1 1
1 0 1
1 1 0

NOR
0 0 1
0 1 0
1 0 0
1 1 0

XOR
Exclusive OR

A X = A  B

X or

B X = A’B + AB’

0 0 0
0 1 1
1 0 1
1 1 0

A X = (A  B)’

X or

B X = A’B’+ AB

0 0 1
0 1 0
1 0 0
1 1 1

XNOR
Exclusive NOR

or Equivalence

A B X

A B X

A X

A B X

A B X

A B X

A B X

UNIT II
COMBINATIONAL LOGIC

• Combinational Circuits –Analysis and Design Procedures

• Binary Adder-Subtractor

• Decimal Adder

• Binary Multiplier

• Magnitude Comparator

• Decoders–Encoders

• Multiplexers

• Introduction to HDL –HDL Models of Combinational circuits.

Introduction:

• When logic gates are connected together to produce a specified output for
certain specified combinations of input variables, with no storage involved, the
resulting circuit is called combinational logic circuit.

• In combinational logic circuit, the output variables are at all times dependent
on the combination of input variables.

• The combinational circuit do not use any memory. The previous state of input
does not have any effect on the present state of the circuit.

• A combinational circuit can have an n number of inputs and m number of
outputs.

Analysis Procedure

Steps to analyse combinational circuit:

1. First make sure that the given circuit is combinational circuit and not the
sequential circuit. The combinational circuit has logic gates with no feedback
path or memory elements.

2. Label all gate outputs that are a function of input variables with arbitrary
symbols and determine the Boolean functions for each gate output.

3. Label the gates that are a function of input variables and previously labelled
gates and determine the Boolean functions for them.

4. Repeat the step 3 until the Boolean function for outputs of the circuit are
obtained.

5. Finally, substituting previously defined Boolean functions, obtain the output
Boolean functions in terms of input variables.

1. Analyze the following logic diagram.

Solution:

A B C D F G

0 0 0 0 1 0 1 1 1 1 1

0 0 0 1 1 0 0 1 0 0 0

0 0 1 0 1 0 1 1 1 1 1

0 0 1 1 1 0 0 1 0 0 0

0 1 0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 0 1 0 0 0

0 1 1 0 1 1 1 1 1 1 1

0 1 1 1 1 1 0 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0 0

1 1 0 1 0 0 0 0 1 0 0

1 1 1 0 0 1 0 0 1 0 1

1 1 1 1 0 1 0 0 1 0 1

Truth Table
K-Map for output F:

K-Map for output G:

A B C D

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 1

0 0 1 0 1 0 1 0 1 0

0 0 1 1 1 0 1 1 1 1

0 1 0 0 0 1 0 1 1 1

0 1 0 1 0 1 0 0 0 1

0 1 1 0 0 1 0 1 1 1

0 1 1 1 0 1 0 0 0 1

1 0 0 0 0 0 1 0 1 0

1 0 0 1 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1 0

1 0 1 1 1 0 1 1 1 1

1 1 0 0 0 0 1 0 1 0

1 1 0 1 0 0 1 1 1 1

1 1 1 0 0 0 1 0 1 0

1 1 1 1 0 0 1 1 1 1

Truth Table

Design Procedure

Steps to design the combinational circuit

1. The problem definition

2. The determination of number of available input variables and
required output variables.

3. Assigning letter symbols to input and output variables

4. The derivation of truth table indicating the relationships between
input and output variables

5. Obtain simplified Boolean expression for each output

6. Obtain the logic diagram

(i) Explain the design procedure of a combinational circuit.

(ii)The inputs to a circuit are the 4 bits of the binary number D3D2D1D0.The circuit produces a 1 if and only if

all of the following conditions hold

1)MSB is ‘1’or any of the other bits are a ‘0’

2) D2 is a 1 or any of the other bits are a ‘0’.

3)Any of the 4 bits are 0

Obtain a minimal expression for the output

Inputs Output

D3 D2 D1 D0 Y

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0Truth Table

D1D0

D3 D2

D1D0

11

0 1 3 2

4 5 7 6

11
D3D2

12 13 15 14

8 9 11 10

A majority gate is a digital circuit whose output is equal to 1 if the majority of inputs
are 1’s. The output is 0 otherwise. Using a truth table, find the Boolean function
implemented by a 3-input majority gate. Simplify the function and implement with
gates.

Solution:

Step 1:Derive the truth table Step 2: Obtain the simplified Boolean expression

Step 3: Draw the logic diagram

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

BC
A

11
BC

0 1 3 2

1 A 4 5 7 6

Binary Adder Subtractor

Adders:

• The most basic operation, is the addition of two binary digits.

• The simple addition consists of four possible elementary operations, namely,

0+0=0

0+1=1

1+0=1

1+1= 102

• The first three operations produce a sum whose length is one digit, but when the
last operation is performed sum is two digits. The higher significant bit of this
result is called a carry, and lower significant bit is called sum.

• The logic circuit which performs this operation is called a half-adder.

• The circuit which performs addition of three bits is called a full-adder.

11. Design a half adder and full adder.

Two binary inputs: augend and addend bits

Two binary outputs: sum and carry

K-map simplification: Logic diagram:

Inputs Outputs

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Truth Table for half adder

Block schematic of half adder

B

A 1 B

0 0

1 A 0 1

B

A 1 B

0 1

1 A 1 0

Carry Sum

Carry=AB

Full Adder

• A full adder is a combinational circuit that forms the arithmetic sum of three input

bits.

• It consist of three inputs and two outputs.

• Two of the input variables, denoted by A and B, represent the two significant bits

to be added. The third input Cin, represents the carry from the previous lower

significant position.

Full adder
A

B

Cin

Cout

Sum

Block Schematic of

full adder

Inputs Outputs

A B Cin

Carry

(Cout)
Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth table of full adder

K-map simplification for carry and sum

BCin

A
11
BCin

0 0 0 1 1 3 0 2

1 A 0 4 1 5 1 7 1 6

BCin

A
11
BCin

0 0 1 1 0 3 1 2

1 A 1 4 0 5 1 7 0 6

K-map for Carry (Cout)

K-map for Sum

Implementation using logic gates:

Full adder using two half adders:

Subtractors:

• The subtraction consists of four possible elementary operations, namely,

0-0=0

0-1=1 with 1 borrow

1-0=1

1-1= 0

• In all operations, each subtrahend bit is subtracted from the minuend bit.

• In case of second operation the minuend bit is smaller than the subtrahend bit, hence 1 is
borrowed.

Half Subtractor:

A half-subtractor is a combinational circuit that subtracts two bits and produces their
difference.

It also has an output to specify if a 1 has been borrowed.

K-map simplification: Logic diagram:

Inputs Outputs

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Truth Table for half subtractor

B

A 1 B

0 1

1 A 0 0

B

A 1 B

0 1

1 A 1 0

Borrow Difference

Limitations:

In multidigit subtraction, we have to add two bits

along with the borrow of previous digit subtraction.

Effectively such subtraction requires subtraction of

three bits. This is not possible with half subtractor.

Full Subtractor

• A half-subtractor is a combinational circuit that performs a subtraction between two bits taking into
account of the lower significant stage.

• This circuit has three inputs: A,B and Binminuend,subtrahend and previous borrow and two
outputsD and Bout

BBin

A
11
BBin

0 0 1 1 0 3 1 2

1 A 1 4 0 5 1 7 0 6

Inputs Outputs

A B Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Truth table of full subtractor

K-map simplification for Difference,D:

K-map simplification for Bout :

BBin

A
11
BBin

0 0 1 1 1 3 1 2

1 A 0 4 0 5 1 7 0 6

Implementation using logic gates:

Full Subtractor using two half subtractor:

Parallel Adder:

• In order to add binary numbers with more than one bit, additional full adders must be
employed.

• A n-bit parallel adder can be constructed using number of full adder circuits connected in
parallel.

• The n-bit parallel adder is built using number of full adder circuits connected in cascade,
i.e., the carry output of each adder is connected to the carry input of the next higher-order
adder.

• It should be noted that either a half-adder can be used for the least significant position or the
carry input of a full-adder is made 0 because there is no carry into the least significant bit
position.

Design a 4-bit parallel adder using full-adders.

Here, for least significant position, carry input of full adder is made 0.

Parallel Subtractor

• The subtraction of binary numbers can be done most conveniently by means of complements.

• The subtraction A-B can be done by taking the 2’s complement of B and adding it to A.

• The 2’s complement can be obtained by taking the 1’s complement and adding one to the least
significant pair of bits.

• The 1’s complement can be implemented with inverters and a one can be added to the sum through
the input carry.

Parallel Adder/Subtractor:

• The operations of both addition and subtraction can be performed by a one common binary adder.

• Such binary circuit can be designed by adding an Ex-OR gate with each full adder.

• The mode input control line M is connected with carry input of the least significant bit of the full
adder.

• This control line decides the type of operation, whether addition or subtraction.

• When M= 1, the circuit is a subtractor and when M=0, the circuit becomes adder.

• The Ex-OR gate consists of two inputs to which one is connected to the B and other to input M.

• When M = 0, B Ex-OR of 0 produce B.

• Then full adders add the B with A with carry input zero and hence an addition operation is
performed.

• When M = 1, B Ex-OR of 1 produce B complement and also carry input is 1.

• Hence the complemented B inputs are added to A and 1 is added through the input carry, nothing
but a 2’s complement operation.

• Therefore, the subtraction operation is performed.

• The parallel adder is ripple carry adder in which the carry output of each full-adder stage
is connected to the carry input of the next higher order stage. Therefore, the sum and
carry outputs of any stage cannot be produced until the input carry occurs; this leads to a
time delay in the addition process. This delay is known as carry-propagation delay.

• The method of speeding up the process of parallel adder by eliminating inter stage carry delay is
called look ahead-carry addition. This method utilizes logic gates to look at the lower-order bits
of the augend and addend to see if a higher-order carry is to be generated.

Look-Ahead Carry adder

• It uses two functions : carry generate and carry propagate

Pi=AiꚚBi

Gi= AiBi

• The output sum and carry can be expressed as,

Si=Pi Ꚛ Ci

Ci+1=Gi + Pi Ci

• Gi is called a carry generate and it produces on carry when both Ai and Bi are one, regardless
of the input carry.

• Pi is called a carry propagate because it is the term associated with the propagation of the
carry from Ci to Ci+1

• Now the Boolean function for the carry
output of each stage can be written as
follows. Ci+1=Gi + Pi Ci

C2=G1 + P1 C1

C3=G2 + P2 C2

=G2 + P2 (G1 + P1 C1)

=G2 + P2 G1 + P2P1 C1

C4=G3 + P3 C3

=G3 + P3 (G2 + P2 G1 + P2P1 C1)

=G3 + P3G2 + P3P2 G1 + P3P2P1 C1

From the above Boolean function it can be
seen that C4 does not have to wait for C3 and
C2 to propagate; in fact C4 is propagated at
the same time as C2 and C3

Serial Adder

• We can add numbers stored in the right shift registers A
and B, serially.

• The full-adder is used to perform bit by bit addition and
D-flipflop is used to store the carry output generated
after addition.

• This carry is used as carry input for the next addition.

• Initially, the D-flipflop is cleared and addition starts
with the least significant bits of both register.

• After each clock pulse data within the right shift
registers are shifted right 1-bit and we get bits from
next digit and carry of previous addition as new inputs
for the full adder.

• The result SUM is stored bit by bit in the register A.

• We can implement serial subtractor by replacing full
subtractor instead of full adder and thereby we get
difference and borrow instead of sum and carry.

Comparison between serial and parallel adder

Serial adder Parallel adder

• Uses shift register • Uses registers with parallel load capacity

• Requires only one full adder circuit
• Number of full adder circuit equal to the

number of bits in the binary number

• It is a sequential circuit • Purely a combinational circuit

• Time required depends on number

of bits

• Time required does not depend on

number of bits

• It is slower • It is faster

BCD Adder

• A BCD adder is a circuit that adds two BCD digits
and produces a sum digit also in BCD.
• To implement BCD adder we require:
4-bit binary adder for initial addition
Logic circuit to detect sum greater than 9
One more 4-bit adder to add 01102 in the sum if the sum is

greater than 9 or carry is 1
The logic circuit to detect sum greater than 9 can be

simplified by Boolean expression of given truth table.

• Y=1 indicates sum is greater than 9.

• We can put one more term, Cout in the above expression to

check whether carry is one.

• If any one condition is satisfied we add 6(0110) in the sum.

Inputs Outputs

S3 S2 S1 S0 Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Truth Table

S1S0

S3 S2

S1S0

11

0 0 0 1 0 3 02

0 4 0 5 0 7 0 6

11
S3S2 1 12 113 1 15 1 14

0 8 0 9 1 11 1 10

K-map Simplification
Block diagram of BCD adder

• The two BCD numbers, together with input carry, are first added in the top 4-bit binary adder to produce a binary

sum.

• When the output carry is equal to zero (i.e., when sum ≤ 9 and Cout =0) nothing (zero) is added to the binary sum.

• When the output carry is equal to one (i.e., when sum > 9 and Cout =1) binary 0110 is added to the binary sum through

the bottom 4-bit binary adder.

• The output carry generated from the bottom binary adder can be ignored, since it supplies information already

available at the output-carry terminal.

Design an 8-bit BCD adder using 4-bit binary adder.

BCD Subtractor

Subtractor using 9’s Complement method:
• The steps for 9’s complement BCD subtraction is as follows:
• Find the 9’s complement of the negative number  it is done by inverting each bit of BCD

number and adding 10(1010) to it.
• Add two numbers using BCD addition
• If carry is generated add carry to the result otherwise find the 9’s complement of the result.

Subtractor using 10’s Complement method:
The steps for 10’s complement BCD subtraction is as follows:
• Find the 10’s complement of the negative number  (9’s

complement+1)
• Add two numbers using BCD addition
• If carry is not generated find the 10’s complement of the result.

Binary Multiplier:

X

+

Multiplication Process

2 x 2 bit combinational array multiplier

4 x 4 multiplier:

x

+

Design a multiple circuit to multiply the following binary number A=A0A1A2

and B=B0B1B2B3

Magnitude comparator

• A comparator is a special combinational circuit designed primarily to compare the
relative magnitude of two binary numbers.

• The n-bit comparator receives two n-bit numbers A and B as inputs and outputs are
A>B, A=B and A<B.

• Depending upon the relative magnitudes of the two number, one of the outputs will be
high.

Design a 1-bit comparator using basic gates.

Solution:

Inputs Outputs

A B

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

1 1 1 0 0

B

A 1 B

1 0

1 A 0 1

B

A 1 B

0 0

1 A 1 0

B

A 1 B

0 1

1 A 0 0

Design 2-bit comparator using gates.

Inputs Outputs

A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

Truth table:

K-map Simplification:

B1B0

A1 A0

B1B0

11

0 1 3 2

4 5 7 6

11
A1A0

12 13 15 14

8 9 11 10

Code Conversion Binary code BCD code

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 1 0

0 1 1 1 0 0 1 1 1

1 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 1

1 0 1 0 1 0 0 0 0

1 0 1 1 1 0 0 0 1

1 1 0 0 1 0 0 1 0

1 1 0 1 1 0 0 1 1

1 1 1 0 1 0 1 0 0

1 1 1 1 1 0 1 0 1

Design a logic circuit to convert BCD to gray code.

BCD code Gray code

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1. Design a logic circuit to convert the 8421 BCD to Excess-3 code.

2. Design and implement a 8421 to gray code converter. Realize using NAND gates only.

3. Design a gray to BCD code converter.

Decoders
• A decoder is a multiple-input, multiple-output logic circuit which converts coded

inputs into coded outputs, where the input and output codes are different.

• The encoded information is presented as n inputs producing 2n possible outputs.

• The 2n output values are from 0 to 2n -1.

• Usually, a decoder is provided with enable inputs to activate decoded output based
on data inputs. When any one enable input is unasserted, all outputs of decoder are
disabled.

Binary Decoder
• A decoder which has an n-bit binary input code and a one activated output out of

2n output code is called binary decoder.

• A binary decoder is used when it is necessary to activate exactly one of 2n outputs
based on an n-bit input value.

Inputs Outputs

EN A B

0 X X 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

Truth Table for a 2 to 4 decoder

Draw the circuit for 3 to 8 decoder and explain.
• In this, 3 inputs are decoded into eight outputs, each output represent

one of the minterms of the 3 input variables.
• The three inverters provide the complement of the inputs, and each

one of the eight AND gates generates one of the minterms.
• Enable input is provided to activate decoded output based on data

inputs A,B and C.

Inputs Outputs

EN A B C

0 X X X 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

Expanding Cascading Decoders
• Binary decoder circuits can be connected together to form a larger decoder circuit.

• The figure shows 4x16 decoder using two 3x8 decoder.

• Here, one input line (D) is used to enable /disable the decoders.

• When D=0, the top decoder is enabled and the other is disabled.

• Thus the bottom decoder outputs are all 1s and the top eight outputs generate minterms 0000 to 0111.

• When D=1, the enable conditions are reversed and thus bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all 1s.

Design 5-to-32 decoder
using one 2-to-4 and
four 3-to-8 decoder
ICs.

Design and implement a full adder circuit using a 3:8 decoder.

Solution:

Truth table of full adder

Inputs Outputs

A B Cin

Carry

(Cout)
Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Applications of Decoders:

• Code converters

• Implementation of combinational circuits

• Address decoding

• BCD to 7-segment decoder

Decoder ICs:

3:8 Decoder – 74138

Dual 2:4 Decoder – 74139

BCD to decimal decoder – 7442

BCD to 7-segment decoder – 7447

Encoders

Decimal to BCD Encoder
• The decimal to BCD encoder, usually

has ten input lines and four output lines.

• The decoded decimal data acts as an
input for encoder and encoded BCD
output is available on the four output
lines.

• In IC 74XX147, it has nine input lines
and four output lines,

• Both the input and output lines are
asserted active low.

• It is important to note that there is no
input line for decimal zero, when this
condition occurs, all output lines are 1.

Decimal

Value

Inputs Outputs

1 2 3 4 5 6 7 8 9 D C B A

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 0

2 X 0 1 1 1 1 1 1 1 1 1 0 1

3 X X 0 1 1 1 1 1 1 1 1 0 0

4 X X X 0 1 1 1 1 1 1 0 1 1

5 X X X X 0 1 1 1 1 1 0 1 0

6 X X X X X 0 1 1 1 1 0 0 1

7 X X X X X X 0 1 1 1 0 0 0

8 X X X X X X X 0 1 0 1 1 1

9 X X X X X X X X 0 0 1 1 0

X denotes don’t care condition

Truth Table for Decimal to BCD encoder

Priority Encoder
Inputs Outputs

V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

Truth table of 4-bit priority encoder

By K-map Simplification:

D2D3

D0 D1

00 01 11 10

00
X 0 1 1 1 3 1 2

01
0 4 1 5 1 7 1 6

11
0 12 113 1 15 1 14

10
0 8 1 9 1 11 1 10

D2D3

D0 D1

00 01 11 10

00
X 0 1 1 1 3 0 2

01
1 4 1 5 1 7 0 6

11
1 12 113 1 15 0 14

10
0 8 1 9 1 11 0 10

D2D3

D0 D1

00 01 11 10

00
0 0 1 1 1 3 1 2

01
1 4 1 5 1 7 1 6

11
1 12 113 1 15 1 14

10
1 8 1 9 1 11 1 10

For Y1

For Y0

For V

Y1 = D2 +D3

V = D0+ D1 +D2 +D3

Octal to Binary Encoder
• It has eight inputs, one for each octal digit, and three outputs that generate the corresponding binary

code.

• In encoders it is assumed that only one input has a value of 1 at any given time; otherwise the circuit
is meaningless.

• The circuit has one more ambiguity that when all inputs are 0s the outputs are 0s. The zero output
can also be generated when D0=1. this ambiguity can be resolved by providing an additional output
that specifies the valid condition.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Encoder ICs:
74147-Decimal to BCD encoder
74148-8-input priority encoder

Multiplexers

2:1 Multiplexer:

• D0 is applied as an input to one AND gate and D1 is applied as an input to another AND gate.

• Enable input is applied to both gates as one input.

• Selection line S is connected as second input to second AND gate.

• An inverted S is applied as second input to first AND gate.

• Outputs of both AND gates are applied as inputs to OR gate.

Working:

• When E=0,output is 0,i.e.,Y=0 irrespective of any input condition.

• When E=1, the circuit works as follows:

a. When S=0, the inverted S, that is gate 1 gets applied as second input to first AND gate. Since S is
applied directly as input to second AND gate, its output goes zero irrespective of first input. Since
the second input of first AND gate is 1, its output is equal to its first input, that is D0. Hence Y= D0

b. Exactly opposite is the case when S=1. In this case, second AND gate output is equal to its first
input D1 and first AND gate output is 0.Hence Y= D1.

Enable

(E)

Select

(S)
D1 D0

Output

Y

1 0 X 0 0

1 0 X 1 1

1 1 0 X 0

1 1 1 X 1 ESD1

0 X X X 0

Truth Table for 2:1 multiplexer

4:1 Multiplexer:

E S1 S0 Y

1 0 0 D0

1 0 1 D1

1 1 0 D2

1 1 1 D3

0 X X 0

Function Table

8:1 Multiplexer: S2 S1 S0 Y

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

(b) Function Table

Quadruple 2 to 1 Multiplexer

• In some cases, two or more multiplexers are enclosed within one IC package.

• The figure shows quadruple 2-to-1 line multiplexer, i.e., four multiplexers, each capable of
selecting one of two input lines.

E S Output Y

1 X All 0s

0 1 Select A

0 0 Select B

Function Table

Expanding Multiplexers
• It is possible to expand range of inputs for

multiplexer beyond the available range by
interconnecting several multiplexers in cascade.

• The circuit with two or more multiplexers
connected to obtain the multiplexer with more
number of inputs is known as multiplexer tree.

Design 16:1 multiplexer using 8:1 multiplexer.

Design 16:1 multiplexer using 4:1 multiplexers.

Implementation of combinational logic using MUX

D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 4 5 6 7

A 8 9 10 11 12 13 14 15

0 0 1 A

Multiplexer Implementation

3. Implement the following Boolean function with 8:1 multiplexer.

F(A,B,C,D)=πM(0,3,5,6,8,9,10,12,14)

Solution: Here, instead of minterms, maxterms are specified. Thus, we have to circle the maxterms
which are not included in the Boolean function.

D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 4 5 6 7

A 8 9 10 11 12 13 14 15

0 A 1

4. Implement the following Boolean function with 8:1 multiplexer.

F(A,B,C,D)=Σm(0,2,6,10,11,12,13)+d(3,8,14)

Solution:

In the given Boolean function three don’t care conditions are also specified. We know that don’t care
conditions can be treated as either 0s or 1s. Here, don’t cares are treated as 1s.

D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 4 5 6 7

A 8 9 10 11 12 13 14 15

1 1 1 0

5. Implement full adder circuit using 8:1 multiplexer.

Inputs Outputs

A B Cin

Carry

(Cout)
Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

6. Implement full adder circuit using quadruple 2 to 1 multiplexer.

Solution:

Implementation Table

Sum:

Carry:

D0 D1 D2 D3

0 1 2 3

A 4 5 6 7

A A

Inputs Outputs

A B Cin

Carry

(Cout)
Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

D0 D1 D2 D3

0 1 2 3

A 4 5 6 7

0 1

7. Realize F(w,x,y,z)=Σ(1,4,6,7,8,9,10,11,15) using 4 to1 MUX.

Solution:

D0 D1 D2 D3

0 1 2 3

4 5 6 7

8 9 10 11

wx 12 13 14 15

Applications of Multiplexer:

• They are used as a data selector to select one out of many data inputs.

• They can be used to implement combinational logic circuit.

• They are used in time multiplexing systems.

• They are used in frequency multiplexing systems.

• They are used in A/D and D/A converter.

• They are used in data acquisition systems.

Multiplexer ICs:

7415016:1 multiplexer

741518:1 multiplexer

74153Dual 4:1 multiplexer

74157Quad 2-input multiplexer

Demultiplexers

Types of Demultiplexers

1:4 Demultiplexer:

• The single input variable Din has a path to all four outputs, but the input information is
directed to only one of the output lines depending on the select inputs.

• Enable input should be high to enable demultiplexer.

1:8 Demultiplexer:

The single input data Din has a path to all eight outputs, but the input information is
directed to only one of the output lines depending on the select inputs.

Logic Symbol:

Expanding Demultiplexer:

To provide larger output needs we can
cascade two or more demultiplexer to get
demultiplexer with more number of
output lines. Such a connection is known
as demultiplexer tree.

1. Design 1:8 demultiplexer using two
1:4 demultiplexers.

Solution:

Step 1: Connect Din signal to Din input of
both the demultiplexers.

Step 2: Connect select lines B and C to
select lines S1 and S0 of the both
demultiplexer.

Step 3: Connect most significant select
line (A) such that when A=0 DEMUX 1
is enabled and when A=1 DEMUX 2 is
enabled.

Implement 1:16 demultiplexer using 1:4 demultiplexer.

Implementation of Combinational Logic using Demultiplexer

Implement full subtractor using demultiplexer.

Solution:

Bout=Σm(1,2,3,7)

D=Σm(1,2,4,7)

Inputs Outputs

A B Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Implement the following functions using demultiplexer.

F1(A,B,C)=Σm(0,3,7)

F2(A,B,C)=Σm(1,2,5)

Applications of Demultiplexer:

• It can be used as a decoder.

• It can be used as a data distributor.

• It is used in time division multiplexing at the receiving end as a data separator.

• It can be used to implement Boolean expression.

Demultiplexer ICs:

741541:16 Demultiplexer

74155Dual 1:4 Demultiplexer

Introduction to Hardware Description Language
Various modeling techniques in HDL

 Gate-level modeling/Structural modeling

 Dataflow modeling

 Behavioral modeling

Structure of HDL module

• Each module consists of a declaration and a body.

• Declaration  name, inputs and outputs of the module are listed.

• Body relationship between the inputs and outputs

• A module is a basic building block of Verilog HDL.

• Modules can represent pieces of hardware ranging from simple gate to complete systems.

• The structure of module is,
module<module name> <port list>;

<declares>

<module items>

endmodule

Operators in Verilog HDL

• Boolean logic(!,&&,||)

• Unary reduction logical(&, |,^)

• Bitwise logical(~&, ~|,~^,~)

• Relational(>,>=,<,<=,==,!=)

• Binary arithmetic(+,-,*,/,%)

• Other (<<,>>)

Structure of the Data Flow Description

Verilog HDL code for full adder
Verilog HDL code for multiplexer with

active low enable

module full_add (A,B,Cin,Cout,Sum);

input A,B,Cin;

output Sum,Cout;

assign Sum=(A^B) ^Cin;

assign Cout=(A & B)|(Cin & A)|(Cin & B);

endmodule

module mux 2x1(D0,D1,S,Enbar,Y);

input D0,D1,S,Enbar;

output Y;

Wire I1,I2,I3,I4;

assign #10 Y=I3|I4;

assign #10 I3=D0 & I1 & I2;

assign #10 I4=D1 & S & I2;

assign #10 I1=~S;

assign #10 I2=~Enbar;

endmodule

Structure of the Behavioral Description

Verilog HDL code for full adder Verilog HDL code for multiplexer

module full_add (A,B,Cin,Cout,Sum);

input A,B,Cin;

output Sum,Cout;

Reg Sum,Cout;

always@(A,B,Cin)

begin

Sum=(A^B) ^Cin;

Cout=(A & B)|(Cin & A)|(Cin & B);

end

endmodule

module mux 2x1(D0,D1,S,Enbar,Y);

input D0,D1,S,Enbar;

output Y;

Reg Y;

always@(S,D0,D1,Enbar)

begin

if(Enbar==0 & S==1)

begin

Y=D0;

end

else if(Enbar==0 & S==0)

Y=D1;

else

Y=1’bz;

end

endmodule

Structural/ Gate Level Description

Verilog HDL code for full adder Verilog HDL code for multiplexer

module full_addER (A,B,Cin,Cout,Sum);

input A,B,Cin;

output Sum,Cout;

Wire S0,C0,C1;

full adder

HA H1(A,B,S0,C0);

HA H2(S0,Cin,Sum,C1);

or (Cout,C0,C1)

endmodule

module HA(A,B,S,C);

input A,B;

output S,C;

xor(S,A,B);

and(C,A,B);

endmodule

module mux 2x1(D0,D1,S,Enbar,Y);

input D0,D1,S,Enbar;

output Y;

and #7 (I3,D0,I1,I2);

or #7 (Y,I3,I4);

and #7 (I4,D1,S,I2);

not #7 (I1,S);

not #7 (I2,Enbar);

endmodule

24EC304-Digital Logic and Computer
Organization
Presented By

Ms.SUGANYA S

Functional Units of a Digital Computer: Von

Neumann Architecture - Operation and Operands of

Computer Hardware Instruction - Instruction Set

Architecture (ISA): Memory Location, Address and

Operation - Instruction and Instruction Sequencing -

Addressing Modes, Encoding of Machine Instruction

- Interaction between Assembly and High-Level

Language.

 A computer is an electronic device that
processes data.

 It's composed of five main functional units
that work together.

 These units are essential for fetching data,
processing it, and producing output.

 Functional Units:

 Input Unit: Takes data and instructions from the
outside world. (e.g., Keyboard, Mouse)

 Memory Unit: Stores data and instructions.

 Arithmetic & Logic Unit (ALU): Performs
arithmetic (+, -, etc.) and logical operations
(AND, OR, etc.).

 Control Unit: Directs all other units. It's the
"brain" of the computer.

 Output Unit: Sends processed data to the outside
world. (e.g., Monitor, Printer)

 The input unit is the first point of interaction
between the user and the computer. It allows the
user to provide instructions and data to the
system using input devices such as keyboards,
mice, scanners, and microphones. This unit is
responsible for converting human-readable
information into binary code, which is the
language understood by computers. Once the
information is digitized, it is passed either to the
memory for storage or directly to the central
processing unit (CPU) for immediate processing.

 The memory unit plays a pivotal role in
storing both data and program instructions.
In accordance with the Von Neumann model,
a single memory unit holds all data and
instructions, eliminating the need for
separate storage locations.

 The memory is typically divided into two main
categories: primary and secondary memory.
Primary memory, or main memory (often RAM), is
fast and volatile, serving as the workspace for the
CPU during processing. It temporarily holds data
that the CPU frequently accesses. Secondary
memory, like hard drives and SSDs, offers long-
term storage for data and software. Memory is
further structured using addresses, allowing the
CPU to access specific data quickly and
efficiently.

 The control unit acts as the coordinator of
the entire computer system. Its primary
function is to interpret instructions fetched
from memory and to direct the operations of
other components accordingly. While it does
not process data itself, it manages the flow of
information between the ALU, memory, and
input/output devices.

 The control unit executes the instruction
cycle, which includes fetching an instruction
from memory, decoding it to determine the
required action, executing the instruction by
signaling other units, and preparing to fetch
the next instruction. It uses control signals to
maintain synchronization and order among
all components.

 The output unit is responsible for conveying
processed data from the computer to the
user or to another system.

 This unit converts digital information into
human-readable or machine-usable formats.

 Common output devices include monitors,
printers, speakers, and communication
interfaces.

 In the realm of computer architecture,
hardware instructions form the core set of
commands that a processor can execute.
Each instruction specifies an operation to
perform, such as arithmetic or data transfer,
along with the operands on which the
operation acts.

 Data Movement Operations

 Arithmetic and Logical Operations

 Control Flow Operations

 Input/Output Operations

 Instructions come in various formats, depending on the
architecture. A typical instruction format includes fields
such as:

 Opcode: Specifies the operation.
 Source operands: Identifies the data inputs.
 Destination operand: Specifies where the result should be

stored.
 Addressing mode bits: Indicate how operands should be

interpreted.

 Different architectures use different instruction lengths
(fixed or variable). For example, RISC (Reduced Instruction
Set Computing) typically uses fixed-length instructions,
while CISC (Complex Instruction Set Computing) may have
variable-length instructions.

 The Von Neumann Architecture is a design
model for digital computers.

 Proposed by John von Neumann in 1945

 Stored Program Concept

 Sequential instruction execution

 Its key feature is the shared memory for both
data and instructions.

 This is a fundamental concept for how most
modern computers operate.

 CPU (ALU + CU)

 Memory Unit

 Input/Output Devices

 Buses: Data, Address, Control

 Key Features:
 Stored-Program Concept: The instructions (program) are

stored in the memory, just like data. This allows the
computer to be reprogrammed.

 Single Bus: A single pathway (bus) is used to fetch both
instructions and data from memory. This is a potential
bottleneck, known as the "Von Neumann Bottleneck."

 Operation Cycle (Fetch-Decode-Execute):
 Fetch: The Control Unit fetches the next instruction from

memory.
 Decode: The Control Unit decodes the instruction to

determine what action to perform.
 Execute: The Control Unit directs the ALU and other

components to perform the action.

 Instruction: Command to CPU
 Opcode (Operation Code):
 Specifies the operation to be performed (e.g., ADD,

SUB, LOAD, STORE).
 Operands:
 The data or address on which the operation is to be

performed.
 Operands can be registers, memory locations, or

immediate values.
 Example: ADD R1, R2, R3
 Opcode: ADD
 Operands: R1, R2, R3
 Meaning: Add the contents of registers R2 and R3

and store the result in register R1.

 The ISA is the interface between the software and the
hardware.

 It's the complete set of instructions that a particular
processor can execute.

 It defines the machine language and the fundamental
commands for a processor.

 Components of ISA:
 Instruction Set: The set of all available opcodes.
 Registers: The processor's internal storage locations.
 Memory Model: How memory is organized and addressed.
 Addressing Modes: How the location of operands is

specified.
 Examples of ISAs:
 x86-64 (used in most desktops and laptops)
 ARM (used in smartphones and tablets)

 Computer memory is like a large array of
storage cells.

 Each cell has a unique number called an
address.

 The address is used to identify and access the
data stored in that location.

 Operations on Memory:
 Read (Load): Copying data from a memory

location to a processor register.
 Write (Store): Copying data from a processor

register to a memory location.

 Program code (instructions)

 Variables (integers, floats, characters)

 Pointers (addresses of other memory
locations)

 Data structures (arrays, structures, objects)

 Different

 One of the most critical aspects of ISA is the way it allows
programs to access memory—this is defined through addressing
modes. Addressing modes determine how the effective address
of an operand is calculated. Common addressing modes include:

 Immediate Addressing: The operand is part of the instruction
itself. Example: MOV R1, #5 (moves the value 5 into register R1).

 Register Addressing: The operand is in a register. Example: ADD
R1, R2 (adds the contents of R2 to R1).

 Direct Addressing: The instruction specifies the memory address
directly. Example: LOAD R1, 1000 (loads value from address
1000).

 Indirect Addressing: The address of the operand is held in a
register or memory. Example: LOAD R1, (R2) (loads from address
stored in R2).

 Instruction sequencing is a fundamental
aspect of computer architecture, governing
how a processor retrieves, decodes, and
executes instructions in a predefined or
dynamically altered order.

 Understanding Computer Instructions A
computer instruction is a binary-encoded
command that tells the CPU to perform a
specific task.

 Instructions can be categorized based on the
operation they perform:

 Data Movement Instructions: Move data between
registers, memory, and I/O (e.g., MOV, LOAD,
STORE).

 Arithmetic and Logical Instructions: Perform
calculations (e.g., ADD, SUB, AND, OR).

 Control Flow Instructions: Alter the flow of execution
(e.g., JMP, CALL, RET).

 Comparison Instructions: Compare values to set
condition flags (e.g., CMP).

 Input/Output Instructions: Interact with peripherals
(e.g., IN, OUT).

 Addressing Modes are different ways of specifying the location of an
operand.

 They provide flexibility and efficiency in accessing data.
 Common Addressing Modes:
 Immediate: The operand is a constant value within the instruction itself.
 Register: The operand is in a specified register.
 Direct (Absolute): The address of the operand is given directly in the

instruction.
 Indirect: The instruction contains the address of a memory location,

which in turn holds the address of the operand.
 Indexed: The address of the operand is calculated by adding a constant

offset to a value in an index register.

 Immediate, Direct, Indirect

 Register, Indexed, Base addressing

 Each addressing mode has specific characteristics
suited to certain tasks. The following are some of the
most commonly used addressing modes:

 a. Immediate Addressing
 In this mode, the operand is specified explicitly in the

instruction. It is useful for loading constants directly.
 Example: MOV R1, #5 (Move the constant value 5 into

register R1).
 Advantage: Fast and requires no memory access

beyond the instruction itself.
 Limitation: Operand size is limited by the instruction

length.

 Register Addressing
 Here, the operand is located in a register. The instruction

specifies which register to use.
 Example: ADD R2, R3 (Add the values in R2 and R3).
 Advantage: Fastest access since registers are internal to the CPU.

 c. Direct (Absolute) Addressing
 The instruction contains the actual memory address of the

operand.
 Example: LOAD R1, 5000 (Load the data at memory address

5000).
 Advantage: Simple and easy to implement.
 Limitation: Limited flexibility for programs needing dynamic

memory access.
 92

 Indirect Addressing
 The instruction refers to a memory location that contains the

address of the operand.
 Example: LOAD R1, (R2) (Use the contents of R2 as a pointer to

memory).
 Advantage: Supports pointer-based programming.
 Limitation: Slower due to multiple memory accesses.

 e. Indexed Addressing
 This mode calculates the effective address by adding a base

address and an index value.
 Example: LOAD R1, 100(R3) (Address = 100 + contents of R3).
 Used for: Accessing array elements.

 Relative Addressing
 This uses the program counter and a constant value to determine

the address.
 Example: JMP +6 (Jump forward by 6 instructions).
 Used in: Branching and loops.

 h. Stack Addressing
 Data is implicitly at the top of the stack; no operand address is

explicitly given.
 Common in: Zero-address machines or stack-based processors.
 Used for: Function calls, returns, and expression evaluation.

 Base-Register Addressing
 Similar to indexed addressing, but focuses more on modular

programming where R3 may point to the beginning of a
structure.

 Example: LOAD R1, 0(R3)

 Significance of Addressing Modes 93
 Addressing modes provide a balance between hardware

efficiency and software flexibility. A processor with multiple
addressing modes can:

 Support high-level constructs like arrays, pointers, and loops.
 Optimize code size and runtime.
 Enable easier compilation from high-level languages.

 Instructions are stored in memory as a sequence of bits (0s and
1s).

 This is called machine code.
 The process of converting a human-readable instruction (e.g.,

ADD R1, R2) into its binary representation is called encoding.
 Encoding Process:
 Each opcode is assigned a specific binary code.
 Each register is also assigned a binary code.
 The final machine instruction is a combination of these binary

codes.
 The ISA defines the exact format and length of the encoded

instructions.

 Instruction encoding defines how each
instruction is represented in binary. A machine
instruction typically consists of several fields:

 Opcode: Specifies the operation (e.g., ADD,
MOV).

 Operands: Specify source and destination data.
 Addressing mode bits: Indicate how to interpret

operand references.
 Immediate or displacement values: Provide data

directly or support relative addressing.

 a. Fixed-Length Encoding

 All instructions occupy the same number of
bits (e.g., 32 bits).

 Common in: RISC architectures (MIPS, ARM).

 Advantage: Easier to decode; consistent fetch
and execute cycles.

 Disadvantage: May waste bits for simple
instructions.

 b. Variable-Length Encoding

 Instructions vary in size based on complexity
(1 to 15 bytes in x86). 94

 Common in: CISC architectures (Intel x86).

 Advantage: Efficient memory use; complex
operations encoded compactly.

 Disadvantage: Slower decoding, more
complex CPU design.

 c. Hybrid Encoding
 Combines features of fixed and variable-length

encoding.
 Example: ARM Thumb mode offers both 16-bit and

32-bit instructions.

 Instruction Format Types
 Various formats exist to accommodate the types of

operations:
 - R-Type (Register): All operands are in registers.
 Example: ADD R1, R2, R3

 - I-Type (Immediate): Includes an immediate
value.

 Example: ADDI R1, R2, #10

 - J-Type (Jump): Contains a jump address.
 Example: JMP 1024

 These formats are standard in RISC-based
architectures like MIPS and simplify the decoding
process.

 High-Level Languages (HLL) (e.g., C++, Java, Python) are abstract and
human-friendly.

 A compiler translates HLL code into a lower-level language.
 The final output is often a form of assembly language.
 Assembly Language:
 A low-level language that is a human-readable representation of

machine code.
 Each assembly instruction corresponds to a single machine instruction.
 An assembler translates assembly code into machine code.
 The Bridge:
 High-level code is compiled into assembly code, which is then

assembled into machine code for the processor to execute. This two-
step process allows programmers to write powerful applications without
needing to know the intricate details of the specific ISA.

 Performance: Assembly enables fine-grained
control for time-critical code.

 Hardware Access: Directly control registers,
I/O ports, or special CPU instructions.

 Compact Code: Assembly can reduce
instruction count and memory footprint.

 Debugging and Analysis: Understand what
compiled code does under the hood.

 Complexity: Writing and understanding
assembly is difficult and time-consuming.

 Portability: Assembly is architecture-specific.

 Maintenance: Harder to update or modify
than high-level code.

 Security Risks: Poorly written assembly can
introduce low-level vulnerabilities.

24EC304-Digital Logic and Computer
Organization
Presented By

Ms.SUGANYA S

Instruction Execution – Building a Data Path –
Designing a control Unit – Hardwired
Control, Microprogrammed Control –
Pipelining – Data Hazard – Control Hazards.

 INSTRUCTIONS :

 An instruction is a piece of a program that
performs an operation issued by the
computer processor.

 Every instruction is defined by the instruction
set of the processor.

 Operation code: Specifies the operation to be performed.
The operation is specified by binary code, hence the name
operation code or simply opcode.

 Source / Destination operand: The source/destination
operand field directly specifies the source/destination
operand for the instruction.

 Source operand address: The operation specified by the
instruction may require one or more source operands.

 Destination operand address: The operation executed by
the CPU may produce result. Usually, the result is stored in
the destination operand.

 ext instruction address: The next instruction address tells
the CPU from where to fetch the next instruction after
completion of execution of current instruction.

 A list of all the instructions with all their
variants that can be executed by a processor
is called instruction set. It is a group of
commands defined by the processor in
machine understandable language.

 An instruction has three fields, namely- 101

 Operation code (Opcode) specifies which type
of operation to be performed.

 Mode Field specifies the way the operand or
effective address is determined.

 Address Field specifies memory address or a
processor register.

 Datapath :

 The Datapath is the pathway that the data takes
through the CPU. As the data travels through the data
path, the control unit regulates interaction between
the data path and the data according to the
instruction being executed.

 The data path consists of functional units that
perform data processing operations such as addition,
subtraction, logical AND, OR, inverting, and shifting.



 A data path element is a functional unit used
to operate on or hold data within a processor.

 The data path elements are:

 The instruction memory

 The data memory

 The register file

 The arithmetic logic unit (ALU)

 Adders

 A memory unit that is used to store the
instructions of a program and supply
instructions given an address

 The beq instruction has three operands, two
registers that are compared for
equality,anda16-bit offset used to compute
the branch target address relative to the
branch instruction address.

 Branches are delayed if the instruction
immediately following the branch is always
executed, independent of whether the branch
condition is true or false.

 When the condition is false, the execution looks
like a normal branch.

 When the condition is true, a delayed branch first
executes the instruction immediately following
the branch in sequential instruction order before
jumping to the specified branch target address.

 The following additional components are
needed for the implementation of the data
path for R-format instructions.

 Register file

 ALU

 The ALU accepts the input from the Data
Read ports of the register file.

 The register file is written by the ALU in
combination with the Reg Write signal.

 The following additional components are
added to build the datapath for load and
store instruction.

 Data Memory unit

 Sign Extension unit

 Control units are designed to manage instruction
execution, and can be implemented using either
hardwired logic or microprogrammed
approaches. Hardwired control units use physical
hardware like gates and flip-flops to generate
control signals, making them fast but inflexible.
Microprogrammed control units, on the other
hand, store control signals in memory as
microinstructions, allowing for flexibility and
easier modification, but potentially sacrificing
speed.

 A hardwired control is a mechanism of
producing control signals using Finite State
Machines (FSM) appropriately. It is designed
as a sequential logic circuit. The final circuit
is constructed by physically connecting the
components such as gates, flip flops, and
drums. Hence, it is named a hardwired
controller.

 Some of the methods that have come up for
designing the hardwired control logic are as
follows –

 Sequence Counter Method − This is the most
convenient method employed to design the
controller of moderate complexity.

 Delay Element Method − This method is
dependent on the use of clocked delay elements
for generating the sequence of control signals.

 State Table Method − This method involves the
traditional algorithmic approach to design the
Notes controller using the classical state table
method.

 Because of the use of combinational circuits to
generate signals, Hardwired Control Unit is fast.

 ▪ It depends on number of gates, how much
delay can occur in generation of control signals.

 ▪ It can be optimized to produce the fast mode of
operation.

 ▪ Faster than micro- programmed control unit.

 ▪ It does not require control memory.

 A control unit whose binary control values are
saved as words in memory is called a
microprogrammed control unit.

 A controller results in the instructions to be
implemented by constructing a definite collection
of signals at each system clock beat. Each of
these output signals generates one micro-
operation including register transfer. Thus, the
sets of control signals are generated definite
micro-operations that can be saved in the
memory.

 There are the following steps followed by the
microprogrammed control are

 It can execute any instruction. The CPU should divide
it down into a set of sequential operations. This set
of operations are called microinstruction. The
sequential micro-operations need the control signals
to execute.

 Control signals saved in the ROM are created to
execute the instructions on the data direction. These
control signals can control the micro-operations
concerned with a microinstruction that is to be
performed at any time step.

 Pipelining is an implementation technique in
which multiple instructions are overlapped in
execution. This enables the processors to
complete the tasks faster.

 Pipeline is divided into five stages.

 Each stage completes a part of an instruction
in parallel. The stages are connected one to
the next to form a pipe like structure.
Instructions enter at one end, progress
through the stages, and exit at the other end.

 Stages of a pipeline
 MIPS pipeline classically take the following five steps:
 Fetch instruction from memory (IF)

 Read registers while decoding the instruction (ID)

 In MIPS implementation reading and decoding occur
simultaneously.

 Execute the operation or calculate an address(EX)

 Access an operand in data memory(MEM)

 Write back the result into a register(WB)

 Any condition that causes the pipeline to stall
is called a hazard. It prevents the next
instruction in the instruction stream from
being executing during its designated clock
cycle. These events are called hazards

 Types:

 Data hazard

 Control/ Instruction hazard

 It occurs when the data are not available at
the time expected in the pipeline. It is also
called pipeline data hazard.

 It is an occurrence in which a planned
instruction cannot execute in the proper
clock cycle because data that is needed to
execute the instruction is not yet available.

 It is also called branch hazard or instruction
hazard.

 It occurs when the branching decisions are made
before branch condition is evaluated.

 It is an occurrence in which the proper
instruction cannot execute in the proper clock
cycle because the instruction that was fetched is
not the one that is needed.

 The flow of instruction addresses is not what the
pipeline expected.

24EC304-Digital Logic and Computer
Organization
Presented By

Ms.SUGANYA S

Memory Concepts and Hierarchy – Memory
Management – Cache Memories: Mapping and
Replacement Techniques – Virtual Memory –
DMA – I/O – Accessing I/O: Parallel and Serial
Interface – Interrupt I/O – Interconnection
Standards: USB, SATA.

 Memory in computer systems is organized in
a hierarchy to optimize speed, cost, and
storage capacity.

 At the top are registers, the fastest and
smallest memory units located within the
CPU.

 Just below are cache memories, which store
frequently accessed data and are faster than
main memory but slower than registers.

 Main memory (RAM) holds currently running
programs and data and has a larger capacity
than cache. At the bottom is secondary
storage, such as hard drives and SSDs, which
provide large, permanent storage but operate
much more slowly. This hierarchical
arrangement ensures efficient and cost-
effective data access.

 External Memory or Secondary Memory:

 Comprising of Magnetic Disk, Optical Disk,
and Magnetic Tape i.e. peripheral storage
devices which are accessible by the processor
via an I/O Module.

 Internal Memory or Primary Memory:

 Comprising of Main Memory, Cache Memory
& CPU registers. This is directly accessible by
the processor.

 Registers

 Registers are small, high-speed memory
units located in the CPU. They are used to
store the most frequently used data and
instructions.

 Cache Memory

 Cache memory is a small, fast memory unit
located close to the CPU. It stores frequently
used data and instructions that have been
recently accessed from the main memory.

 Main Memory

 Main memory also known as RAM (Random
Access Memory), is the primary memory of a
computer system. It has a larger storage
capacity than cache memory, but it is slower.
Main memory is used to store data and
instructions that are currently in use by the
CPU.

 Access Time:
Registers have the fastest access time, while

secondary storage has the slowest.
 Capacity:

Secondary storage has the largest capacity,
while registers have the smallest.

 Cost:
Registers are the most expensive per bit, while

secondary storage is the least expensive.
 Locality of Reference:

The principle that programs tend to access the
same data and instructions repeatedly, allowing
caches to store frequently used information.

 Performance

 Cost Efficiency

 Optimized Resource Utilization

 Efficient Data Management

 Complex Design

 Cost

 Latency

 Maintenance Overhead

 Memory is a crucial part of a computer used to
store data.

 Since main memory is limited and multiple
processes compete for it, efficient memory
management is essential especially in
multiprogramming systems.

 To enhance performance, several processes must
reside in memory simultaneously.

 Poor memory allocation can leave the CPU idle
while processes wait for I/O.

 Hence, memory must be managed efficiently to
maximize CPU utilization and system throughput.

 Memory management mostly involves
management of main memory. In a
multiprogramming computer, the Operating
System resides in a part of the main memory,
and the rest is used by multiple processes.

 The task of subdividing the memory among
different processes is called Memory
Management.

 The main aim of memory management is to
achieve efficient utilization of memory.

 Allocate and de-allocate memory before and
after process execution.

 To keep track of used memory space by
processes.

 To minimize fragmentation issues.

 To proper utilization of main memory.

 To maintain data integrity while executing of
process

 Logical Address Space: An address generated by
the CPU is known as a “Logical Address”. It is also
known as a Virtual address. Logical address
space can be defined as the size of the process.
A logical address can be changed.

 • Physical Address Space: An address seen by the
memory unit (i.e. the one loaded into the
memory address register of the memory) is
commonly known as a “Physical Address”. A
Physical address is also known as a Real address.

 Static Loading: Static Loading is basically
loading the entire program into a fixed
address. It requires more memory space.

 Dynamic Loading: The entire program and all
data of a process must be in physical memory
for the process to execute. So, the size of a
process is limited to the size of physical
memory.

 Static Linking: In static linking, the linker
combines all necessary program modules into
a single executable program. So there is no
runtime dependency.

 Dynamic Linking: The basic concept of
dynamic linking is similar to dynamic loading.
In dynamic linking, “Stub” is included for each
appropriate library routine reference.

 When a process is executed it must have
resided in memory.

 Swapping is a process of swapping a process
temporarily into a secondary memory from
the main memory, which is fast compared to
secondary memory.

 A swapping allows more processes to be run
and can be fit into memory at one time.

 The main part of swapping is transferred time
and the total time is directly proportional to
the amount of memory swapped.

 Memory management techniques are
methods used by an operating system to
efficiently allocate, utilize, and manage
memory resources for processes.

 These techniques ensure smooth execution
of programs and optimal use of system
memory

 Memory Management with
Monoprogramming (Without Swapping)

 This is the simplest memory management
approach the memory is divided into two
sections:

 One part of the operating system

 The second part of the user program

 Multiprogramming with Fixed Partitions
(Without Swapping)

 • A memory partition scheme with a fixed
number of partitions was introduced to
support multiprogramming. this scheme is
based on contiguous allocation

 • Each partition is a block of contiguous
memory

 • Memory is partitioned into a fixed number
of partitions.

 • Each partition is of fixed size

 Partition Table

Once partitions are defined operating
system keeps track of the status of memory
partitions it is done through a data structure
called a partition table.

 Logical vs Physical Address

 An address generated by the CPU is
commonly referred to as a logical address.
the address seen by the memory unit is
known as the physical address. The logical
address can be mapped to a physical address
by hardware with the help of a base register
this is known as dynamic relocation of
memory references.

 Contiguous Memory Allocation

 Contiguous memory allocation is a memory
management method where each process is
given a single, continuous block of memory.
This means all the data for a process is
stored in adjacent memory locations.

 Partition Allocation Methods

 To gain proper memory utilization, memory
allocation must be allocated efficient manner.
One of the simplest methods for allocating
memory is to divide memory into several
fixed-sized partitions and each partition
contains exactly one process.

 Non-Contiguous Memory Allocation

 Non-contiguous memory allocation is a
memory management method where a
process is divided into smaller parts, and
these parts are stored in different, non-
adjacent memory locations.

 Techniques of Non-Contiguous Memory
Allocation are:

 Paging

 Segmentation

 Fragmentation

 Fragmentation is defined as when the process
is loaded and removed after execution from
memory, it creates a small free hole. These
holes cannot be assigned to new processes
because holes are not combined or do not
fulfil the memory requirement of the process.



 Types of fragmentation are:

 Internal fragmentation: Internal
fragmentation occurs when memory blocks
are allocated to the process more than their
requested size. Due to this some unused
space is left over and creating an internal
fragmentation problem.

 Types of fragmentation(Contd):

 External fragmentation: In External
Fragmentation, we have a free memory block,
but we cannot assign it to a process because
blocks are not contiguous.

 Cache memory is a small, high-speed storage
area in a computer. The cache is a smaller
and faster memory that stores copies of the
data from frequently used main memory
locations.

 There are various independent caches in a
CPU, which store instructions and data.

Characteristics of Cache Memory
 Extremely fast memory type that acts as a

buffer between RAM and the CPU.
 Holds frequently requested data and

instructions, ensuring that they are
immediately available to the CPU when
needed.

 Costlier than main memory or disk memory
but more economical than CPU registers.

 Used to speed up processing and synchronize
with the high-speed CPU.

 Key Features of Cache Memory
 Speed: Faster than the main memory (RAM),

which helps the CPU retrieve data more
quickly.

 Proximity: Located very close to the CPU,
often on the CPU chip itself, reducing data
access time.

 Function: Temporarily holds data and
instructions that the CPU is likely to use again
soon, minimizing the need to access the
slower main memory.

 The role of cache memory is explained below,

 • Cache memory plays a crucial role in
computer systems.

 • It provides faster access.

 • It acts buffer between CPU and main
memory(RAM).

 • Primary role of it is to reduce average time
taken to access data, thereby improving.
overall system performance.

 In order to understand the working of cache
we must understand few points:

 Cache memory is faster, they can be accessed
very fast

 Cache memory is smaller, a large amount of
data cannot be stored

 Application of Cache Memory

 • Primary Cache

 • Secondary Cache

 • Spatial Locality of Reference

 • Temporal Locality of Reference

 Advantages

 Cache Memory is faster in comparison to
main memory and secondary memory.

 Programs stored by Cache Memory can be
executed in less time.

 The data access time of Cache Memory is less
than that of the main memory.

 Cache Memory stored data and instructions
that are regularly used by the CPU, therefore
it increases the performance of the CPU.

 Cache Mapping
 Cache mapping refers to the method used to store

data from main memory into the cache. It determines
how data from memory is mapped to specific
locations in the cache.

 Need of Replacement Algorithm:
 Set associative mapping is a combination of direct

mapping and fully associative mapping.
 It uses fully associative mapping within each set.
 Thus, set associative mapping requires a replacement

algorithm.

 Virtual memory is a memory management
technique used by operating systems to give
the appearance of a large, continuous block
of memory to applications, even if the
physical memory (RAM) is limited. It allows
larger applications to run on systems with
less RAM.

 How Virtual Memory Works?
 All memory references within a process are logical

addresses that are dynamically translated into
physical addresses at run time. 126

 This means that a process can be swapped in and out
of the main memory such that it occupies different
places in the main memory at different times during
the course of execution.

 A process may be broken into a number of pieces and
these pieces need not be continuously located in the
main memory during execution.

 The combination of dynamic run-time address
translation and the use of a page or segment table
permit this.

 Types of Virtual Memory

 In a computer, virtual memory is managed by
the Memory Management Unit (MMU), which
is often built into the CPU. The CPU generates
virtual addresses that the MMU translates into
physical addresses.

 There are two main types of virtual memory:

 Paging

 Segmentation

 Paging divides memory into small fixed-size
blocks called pages. When the computer runs out
of RAM, pages that aren’t currently in use are
moved to the hard drive, into an area called a
swap file.

 The swap file acts as an extension of RAM. When
a page is needed again, it is swapped back into
RAM, a process known as page swapping.

 This ensures that the operating system (OS) and
applications have enough memory to run.

 Demand Paging: The process of loading the page
into memory on demand (whenever a page fault
occurs) is known as demand paging.

 Segmentation
 Segmentation divides virtual memory into

segments of different sizes. Segments that
aren’t currently needed can be moved to the
hard drive.

 The system uses a segment table to keep
track of each segment’s status, including
whether it’s in memory, if it’s been modified,
and its physical address.

 Segments are mapped into a process’s
address space only when needed.

 Swapping is a process out means removing
all of its pages from memory, or marking
them so that they will be removed by the
normal page replacement process.

 Suspending a process ensures that it is not
run able while it is swapped out.

 At some later time, the system swaps back
the process from the secondary storage to
the main memory.

 When a process is busy swapping pages in
and out then this situation is called thrashing.

 Thrashing:

 At any given time, only a few pages of any
process are in the main memory, and
therefore more processes can be maintained
in memory. Furthermore, time is saved
because unused pages are not swapped in
and out of memory.

 In modern computer systems, transferring
data between input/output devices and
memory can be a slow process if the CPU is
required to manage every step. To address
this, a Direct Memory Access (DMA)
Controller is utilized.

 DMA Controller

 Direct Memory Access (DMA) uses hardware
for accessing the memory.

 This hardware is called a DMA Controller. It
has the work of transferring the data between
input, output devices and main memory with
very less interaction with the processor.

 The Direct Memory Access Controller is a
control unit, which has the work of
transferring data.

 Types of DMA

 Single-Ended DMA: In this type, the DMA
controller is connected only to one device
(usually either the memory or the I/O device),
and it directly controls data transfer.

 Dual-Ended DMA: The DMA controller is
connected to both the source and the
destination, typically memory and an I/O
device.

 Types of DMA

 Arbitrated-Ended DMA: In systems with
multiple DMA devices or masters, arbitration
is needed to decide which device gets control
of the bus. It is more advanced than Dual-
Ended DMA.

 Interleaved DMA: Interleaved DMA are those
DMA that read from one memory address and
write from another memory address.

 Working of DMA Controller

 The DMA controller registers have three
registers as follows.

 Address register: It contains the address to
specify the desired location in memory.

 Word count register: It contains the number
of words to be transferred.

 Control register: It specifies the transfer
mode.

 The method that is used to transfer information
between internal storage and external I/O
devices is known as I/O interface.

 The CPU is interfaced using special
communication links by the peripherals
connected to any computer system.

 These communication links are used to resolve
the differences between CPU and peripheral.

 There exists special hardware components
between CPU and peripherals to supervise and
synchronize all the input and output transfers
that are called interface units.

 An interrupt I/O is a process of data transfer
in which an external device or a peripheral
informs the CPU that it is ready for
communication and requests the attention of
the CPU.The terminals send and receive serial
information.

 USB was designed to standardize the
connection of peripherals like pointing
devices, keyboards, digital images and video
cameras.

 But some devices such as printers, portable
media players, disk drives, and network
adaptors to personal computers used USB to
communicate and to supply electric power.

 Universal Serial Bus (USB) is an industry
standard that establishes specifications for
connectors, cables, and protocols for
communication, connection, and power
supply between personal computers and their
peripheral devices.

 There have been 3 generations of USB
specifications:

 USB 1.x
 USB 2.0
 USB 3.x

 SATA stands for Serial Advanced Technology
Attachment or Serial ATA. SATA is an
interface that connects various storage
devices such as hard disks, optical drives
SSD’s, etc to the motherboard.

 SATA operates on two modes:

 1. IDE mode: IDE stands for Integrated Drive
Electronics. This is a mode which is used to
provide backward compatibility with older
hardware, which runs on PATA, at the cost of
low performance.

 2. AHCI mode: AHCI is abbreviation for
Advanced Host Controller Interface. AHCI is a
high-performance mode that also provides
support for hot-swapping.

 Characteristics of SATA
 Low Voltage Requirement: SATA operates on

500mV (0.5V) peak-to-peak signaling.
 Differential Signaling: SATA uses differential

signaling. Differential signaling is a
technology which uses two adjacent wires to
simultaneously the in-phase and out- of-
phase signals.

 • High data transfer rate: SATA has a high
data transfer rate of 150/300/600
MBs/second.

 Advantages of SATA

 Faster data transfer rate as compared to
PATA.

 SATA cable can be of length upto 1 meter,
whereas PATA cable can only have length of
maximum 18 inches.

 SATA cables are smaller in size.

 Since, they are smaller in size; they take up
less space inside the computer and increase
the internal air flow.

