

Patent Search

Invention Title	AN AUTONOMOUS MOBILE ROBOT SYSTEM MONITORING EMOTIONAL AND PHYSICAL HEALTH PARAMETERS AND A METHOD THEREOF	
Publication Number	13/2024	
Publication Date	29/03/2024	
Publication Type	INA	
Application Number	202441019701	
Application Filing Date	17/03/2024	
Priority Number		
Priority Country		
Priority Date		
Field Of Invention	ELECTRONICS	
Classification (IPC)	G05D0001020000, G01S0017870000, G06F0003010000, G01N0027300000, G06T0007130000	

Inventor

Name	Address	Country
Dr. B. Ramesh	Dean-Industry 4.0, Professor, Department of Mechanical Engineering, JJ. College of Engineering and Technology, Tiruchirappalli - 620009, Tamil Nadu, India	India
Dr. Alapati Venkateswarlu	Professor, Department of Mechanical Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada-520007, Andhra Pradesh, India	India
Dr. S. Benjamin Franklin	Associate Professor Gr1, Department of Mechanical Engineering, Sri Ramakrishna Institute of Technology, Coimbatore - 641010, Tamil Nadu, India	India
Mr. S. A. Muhammed Abraar	Assistant Professor Department of Mechanical Engineering St. Joseph's Institute of Technology, OMR, Chennai - 600119, Tamil Nadu, India	India
Dr. P. Elamurugan	Associate Professor, Department of Biomedical Engineering, Kongunadu College of Engineering and Technology, Tholurpatti, Thottiyam TK, Trichy - 621215, Tamil Nadu, India	India
Dr. S. Saravanakumar	Assistant Professor, Department of Mechanical Engineering, M Kumarasamy College of Engineering, Thalavapalayam - 639113, Tamil Nadu, India	India
Dr. G. R. Gopinath	Assistant Professor, Department of Mechanical Engineering, M.Kumarasamy College of Engineering, Thalavapalayam, Karur - 639113, Tamil Nadu, India	India
Mrs. M. Pradeepa	Assistant Professor, Electronics and Communication Engineering, SNS College of Technology, Vazhiyampalayam, Saravanampatti Post, Coimbatore - 641035, Tamil Nadu, India	India

Applicant

Name	Address	Country
Dr. B. Ramesh	Dean-Industry 4.0, Professor, Department of Mechanical Engineering, JJ. College of Engineering and Technology, Tiruchirappalli - 620009, Tamil Nadu, India	India
Dr. Alapati Venkateswarlu	Professor, Department of Mechanical Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada-520007, Andhra Pradesh, India	India
Dr. S. Benjamin Franklin	Associate Professor Gr1, Department of Mechanical Engineering, Sri Ramakrishna Institute of Technology, Coimbatore - 641010, Tamil Nadu, India	India
Mr. S. A. Muhammed Abraar	Assistant Professor Department of Mechanical Engineering St. Joseph's Institute of Technology, OMR, Chennai - 600119, Tamil Nadu, India	India
Dr. P. Elamurugan	Associate Professor, Department of Biomedical Engineering, Kongunadu College of Engineering and Technology, Tholurpatti, Thottiyam TK, Trichy - 621215, Tamil Nadu, India	India
Dr. S. Saravanakumar	Assistant Professor, Department of Mechanical Engineering, M Kumarasamy College of Engineering, Thalavapalayam - 639113, Tamil Nadu, India	India
Dr. G. R. Gopinath	Assistant Professor, Department of Mechanical Engineering, M.Kumarasamy College of Engineering, Thalavapalayam, Karur - 639113, Tamil Nadu, India	India
Mrs. M. Pradeepa	Assistant Professor, Electronics and Communication Engineering, SNS College of Technology, Vazhiyampalayam, Saravanampatti Post, Coimbatore - 641035, Tamil Nadu, India	India

Abstract:

Research in indoor autonomous mobile robots (AMRs) is pivotal, emphasizing the acquisition of environment and self-data through sensors. These sensors facilitate localization, mapping, obstacle recognition, and motion control. This review delves into sensing technologies for indoor AMRs, analyzing benefits and potential drawbacks of single-sensor applications while introducing fundamental principles and common algorithms for data processing. Additionally, it explores multi-sensor fusion techniques. The work outlines future trends and challenges in indoor AMR sensing technology, focusing on practical applications.

[Complete Specification](#)**Description:FIELD OF INVENTION**

The invention pertains to an autonomous mobile robot system designed to monitor emotional and physical health parameters. It includes sensors and algorithms for real-time data collection and analysis. The method involves integrating sensor data to assess an individual's well-being and provide relevant feedback or assistance.

BACKGROUND OF INVENTION

In recent years, there has been a significant advancement in autonomous mobile robots (AMRs), leading to their increasing adoption in various indoor scenarios. AMRs are replacing humans in tasks across industries such as warehousing, logistics, healthcare, restaurants, and personal services. The core aspects of mobile robotics encompass locomotion, perception, cognition, and navigation. Locomotion focuses on the motion system design, considering factors like environment, controllability, and efficiency. Perception involves gathering information about the robot's surroundings and itself. Cognition entails analyzing and processing perception data to devise control strategies for task completion. Navigation integrates perception, cognition, and motion control to navigate the robot from its starting point to a designated goal in a known or unknown environment. Perception plays a pivotal role in ensuring the safe and efficient operation of mobile robots by enabling accurate environment sensing and decision-making. The perception system employs various sensing techniques to gather information for tasks like localization, mapping, and object detection, facilitating effective path planning and navigation.

The patent application number 202011020513 discloses a system & method for real time health monitoring of a machine component

[View Application Status](#)

**Department of Industrial
Policy and Promotion**
Government of India

[Terms & conditions](#) (<https://ipindia.gov.in/Home/Termsconditions>) [Privacy Policy](#) (<https://ipindia.gov.in/Home/Privacypolicy>)

[Copyright](#) (<https://ipindia.gov.in/Home/copyright>) [Hyperlinking Policy](#) (<https://ipindia.gov.in/Home/hyperlinkingpolicy>)

[Accessibility](#) (<https://ipindia.gov.in/Home/accessibility>) [Contact Us](#) (<https://ipindia.gov.in/Home/contactus>) [Help](#) (<https://ipindia.gov.in/Home/help>)

Content Owned, updated and maintained by Intellectual Property India, All Rights Reserved.

Page last updated on: 26/06/2019